EPA-542-R-93-003 Number 5 September 1993 # INNOVATIVE TREATMENT TECHNOLOGIES: ANNUAL STATUS REPORT (Fifth Edition) U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460 #### NOTICE This material has been funded wholly or in part by the United States Environmental Protection Agency under contract number 68-C0-0047. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. To obtain a copy of this report, fill out the request form on the next page and mail or fax it to: U.S. EPA/NCEPI P.O. Box 42419 Cincinnati, OH 45242 Fax Number: 513-891-6685 #### INNOVATIVE TREATMENT TECHNOLOGIES: ANNUAL STATUS REPORT EPA 542-R-93-003 #### **Document Request Form** This report is distributed once a year to Superfund management in U.S. EPA Headquarters and regional offices, pertinent EPA laboratories, states, EPA libraries, and representatives of other federal agencies. All project contacts listed in the report also receive a copy. If you would like your name added to or deleted from the mailing list for future reports, please complete the following form and send or fax it to: U.S. EPA/EPIC P.O. Box 42419 Cincinnati, OH 45242-2419 Fax number: 513-891-6685 | Please add my name and address to the mailing list: | ☐ Please remove my name and address from the mailing list. | |--|---| | Name | | | Company | | | Street or P.O. Box | | | City | State Zip | | My name is already on the mailing list. Please chang | ge the name and address | | FROM: | _ TO: | | | | | | | If you would like copies of this fifth edition of the *Innovative Treatment Technologies: Annual Status Report*, mail or fax to NCEPI and ask for it by number, EPA 542-R-93-003. #### **FOREWORD** In April 1990, the U.S. Environmental Protection Agency's (EPA) Office of Solid Waste and Emergency Response (OSWER) established the Technology Innovative Office (TIO) to promote the use of innovative treatment technologies for contaminated site cleanup. TIO's mission is to encourage government and industry to increase the use of innovative treatment technology to mitigate contaminated waste sites, soils and ground water. One of TIO's goals is the removal of regulatory and institutional barriers to the development and use of innovative technologies. Another is the provision of richer technology and market information to target audiences, including federal agencies, states, consulting engineering firms, responsible parties, technology developers, technology vendors and the investment community. This report documents the status of innovative treatment technology use in the Superfund program. To a lesser extent, the report presents information on innovative treatment projects at non-Superfund sites under the jurisdiction of the Department of Defense and the Department of Energy. We have changed the format of the report this year by breaking it into three chapters presenting Superfund remedial actions, removal actions, and non-Superfund sites, respectively. We have also expanded the report to include many new innovative projects selected by EPA in fiscal year 1992 and numerous graphics and tables to assist the reader in understanding the data. We hope that this information will allow better communication between experienced technology users and those who are considering innovative technologies to clean up contaminated sites, as well as enabling technology vendors to evaluate the market for innovative treatment technologies in Superfund for the next several years. The use of innovative treatment technologies in Superfund and other EPA waste programs is addressed by a directive, Furthering the Use of Innovative Treatment Technologies in OSWER Programs (OSWER Directive 9380.0-17, June 10, 1991). This directive sets forth seven initiatives to remove impediments from and create incentives for the use of innovative treatment technologies for Superfund, corrective action under the Resource Conservation and Recovery Act (RCRA), and underground storage tank cleanups. It is hoped that efforts such as the directive and this document will increase the reliance on new, less costly, or more effective technologies to address the problems associated with Superfund and other hazardous waste sites, and petroleum contamination. Walter W. Kovalick, Jr. Ph.D. Director, Technology Innovation Office #### **ACKNOWLEDGEMENTS** This document was prepared under the direction of Ms. Linda Fiedler, work assignment manager for the U.S. Environmental Protection Agency's Technology Innovation Office. Special acknowledgement is due the Regional and state staff listed as contacts for individual sites. They provided the detailed information in this document. Their cooperation and willingness to share their knowledge and expertise on innovative treatment technologies encourages the application of those technologies at other sites. #### **ABSTRACT** This yearly report (formerly published twice a year) documents and analyzes the selection and use of innovative treatment technologies in the U.S. EPA Superfund Program and at some non-Superfund sites under the jurisdiction of the Departments of Defense (DoD) and Energy (DOE). The status of every project has been updated, and projects selected in fiscal year 1992 Superfund Records of Decision (ROD) are included. The information will allow better communication between experienced technology users and those who are considering innovative technologies to clean up contaminated sites. In addition, the information will enable technology vendors to evaluate the market for innovative technologies in Superfund for the next several years. It also will be used by EPA's Technology Innovation Office to track progress in the application of innovative treatment technologies. Alternative treatment technologies are alternatives to land disposal. Innovative treatment technologies are alternative treatment technologies the use of which at Superfund and similar sites is inhibited by lack of data on cost and performance. This report documents the use of the following innovative treatment technologies to treat ground water (in situ), soils, sediments, sludge, and solid-matrix wastes: - Bioremediation (Ex Situ) - Bioremediation (In Situ) - Chemical treatment - Dechlorination - In situ flushing - In situ vitrification - Soil vapor extraction - Soil washing - Solvent extraction - Thermal desorption - Other technologies (air sparging, contained recovery of oil wastes, limestone barriers and fuming gasification) The document includes information on 263 applications of innovative treatment technologies for remedial actions, 33 applications for removal actions, and 28 applications under other federal programs. Chapters 1, 2, and 3 contain detailed, site-specific information for Superfund remedial and removal sites, at which innovative treatment has been selected or used. The information for these chapters was collected through analyses of RODs, review of OSWER tracking systems, and interviews with EPA regional, DoD, and DOE staff. Chapters 1, 2, and 3 also contain performance and operating data on the 14 remedial, 19 removal, and 7 non-Superfund innovative projects that have been completed. #### **CONTENTS** | | Page | |--|--------| | Notice | ii | | Document Request Form | iii | | Foreword | iv | | Acknowledgements | v | | Abstract | vi | | List of Figures | viii | | List of Tables | ix | | List of Abbreviations | x | | OVERVIEW | | | Introduction | OV-1 | | What are Alternative and Innovative Treatment Technologies? | OV-1 | | Sources of Information for this Report | . OV-1 | | Definitions for Specific Innovative Treatment Technologies | OV-2 | | CHAPTER 1: SUPERFUND REMEDIAL ACTIONS | 1-1 | | Frequency of Technology Selection | 1-1 | | Status of Innovative Technology Implementation | . 1-6 | | Contaminants of Addressed by Innovative Treatment Technologies | 1-6 | | Quantity of Soil Addressed | 1-6 | | Treatment Trains | 1-7 | | CHAPTER 2: SUPERFUND REMOVAL ACTIONS | 2-1 | | Frequency of Technology Selection | 2-1 | | Status of Innovative Technology Implementation | 2-2 | | Contaminants Addressed by Innovative Treatment Technologies | 2-3 | | Treatment Trains | 2-3 | | CHAPTER 3: ACTIONS UNDER OTHER FEDERAL PROGRAMS | 3-1 | | Appendix A: Summary of Status Report Updates, Changes, and Deletions | A-1 | #### LIST OF FIGURES | Numb | er | | Page | |------|--|---|------| | 1-1 | Superfund Remedial Actions: | RODs Signed by Fiscal Year | 1-1 | | 1-2 | Superfund Remedial Actions: | Source Control RODs by Fiscal Year | 1-1 | | 1-3 | Superfund Remedial Actions: | Overview of Source Control RODs Through Fiscal Year 1992 | 1-2 | | 1-4 | Superfund Remedial Actions: | Treatment and Disposal Decisions for Source Control | 1-2 | | 1-5 | Superfund Remedial Actions: | Summary of Alternative Treatment Technologies Selected | | | | Through Fiscal Year 1992 | | 1-3 | | 1-6 | Superfund Remedial Actions: | Number of Established Versus Innovative Treatment Technologies | 1-4 | | 1-7 | Superfund Remedial Actions: | Number of Innovative Treatment Technologies Versus | 1-4 | | | Corresponding RODs | | | | 1-8 | Superfund Remedial Actions: | Innovative Treatment Technologies by Year | 1-5 | | 1-9 | Superfund Remedial Actions: | Trends in the Selection of Four Innovative Treatment Technologies | 1-5 | | 1-10 | Superfund Remedial Actions: | Project Status of Innovative Treatment Technologies as of June 1993 | 1-6 | | 1-11 | Superfund Remedial Actions: | Application of Innovative Treatment Technologies | 1-6 | | 1-12 | Superfund Remedial Actions: | Quantities of Soil to be Treated by Innovative Technologies |
1-7 | | 1-13 | Superfund Remedial Actions: | Treatment Trains with Innovative Treatment Technologies | 1-7 | | 2-1 | Superfund Removal Actions: | Summary of Innovative Technologies Selected/Used as of June 1993 | 2-1 | | 2-2 | Superfund Removal Actions: | Project Status of Innovative Treatment Technologies as of June 1993 | 2-2 | | 2-3 | Superfund Removal Actions: | Application of Innovative Treatment Technologies | 2-3 | | 3-1 | Sample of Projects Under Oth as of June 1993 | er Federal Programs: Status of Innovative Treatment Technologies | 3-1 | #### LIST OF TABLES | Nun | nber | Page | |-----|--|------| | 1-1 | Superfund Remedial Actions: Site-Specific Information by Innovative Treatment Technology | 1-8 | | 1-2 | Superfund Remedial Actions: Innovative Treatment Technologies by EPA Region | 1-67 | | 1-3 | Superfund Remedial Actions: Project Status by Innovative Treatment Technology | 1-73 | | 1-4 | Superfund Remedial Actions: Established Treatment Technologies by Fiscal Year | 1-79 | | 1-5 | Superfund Remedial Actions: Treatment Trains with Innovative Treatment Technologies | 1-86 | | 1-6 | Superfund Remedial Actions: Performance Data on Completed Projects | 1-88 | | 2-1 | Superfund Removal Actions: Site-Specific Information by Innovative Treatment Technology | 2-4 | | 2-2 | Superfund Removal Actions: Innovative Treatment Technologies by EPA Region | 2-17 | | 2-3 | Superfund Removal Actions: Project Status by Innovative Treatment Technology | 2-19 | | 2-4 | Superfund Removal Actions: Treatment Trains with Innovative Treatment Technologies | 2-21 | | 2-5 | Superfund Removal Actions: Performance Data on Completed Projects | 2-23 | | 3-1 | Other Federal Programs: Site-Specific Information by Innovative Treatment Technology | 3-2 | | 3-2 | Other Federal Programs: Innovative Treatment Technologies By EPA Region | 3-12 | | 3-3 | Other Federal Programs: Project Status by Innovative Treatment Technology | 3-14 | | 3-4 | Other Federal Programs: Performance Data on Completed Projects | 3-16 | #### LIST OF ABREVIATIONS | AM | Action Memorandum | NPL | National Priorities List | |-------|--|-------------|--| | APC | Air pollution control | OERR | Office of Emergency and Remedial Response | | APEG | Alkaline metal hydroxide/polyethylene glycol | OSC | On-scene coordinator | | ARCS | Alternative remedial contracts strategy | OSWER | | | ATTIC | Alternative Treatment Technology Information | OU | Office of Solid Waste and Emergency Response Operable unit | | ATTIC | Center | PAH | • | | BCD | | PCB | Polynuclear aromatic hydrocarbon | | BTEX | Base catalyzed dechlorination | | Polychlorinated biphenyl | | | Benzene, toluene, ethylbenzene, and xylene | PCE | Perchloroethylene (tetrachloroethylene) | | BTX | Benzene, toluene, and xylene | PCP | Pentachlorophenol | | cy | Cubic yards | PRP | Potentially responsible party | | DCA | Dichloroethane | RA | Remedial action | | DCE | Dichloroethylene | RCRA | Resource Conservation and Recovery Act | | DEHP | Di(2-ethylhexyl phthalate) | RD | Remedial design | | DLA | Defense Logistics Agency | ROD | Record of Decision | | DNT | Dinitrotoluene | RPM | Remedial project manager | | EECA | Engineering Evaluation/Cost Analysis | RSKERL | Robert S. Kerr Environmental Research Laboratory, | | ESD | Explanation of significant differences | | Ada, Oklahoma (EPA) | | FAA | Federal Aviation Administration | SARA | Superfund Amendment and Reauthorization Act | | ft | Feet | | of 1986 | | FUDS | Formerly used defense sites | SACM | Superfund Accelerated Cleanup Model | | FY | Fiscal year | SVOC | Semivolatile organic compound | | gw | Ground water | S/S | Solidification and stabilization | | IRP | Installation Restoration Program | TCA | Trichloroethane | | KPEG | Potassium hydroxide/polyethylene glycol | TCE | Trichloroethylene | | MEK | Methyl ethyl ketone | TIO | Technology Innovation Office | | MBOCA | 4,4' -Methylenebis(2-chloroaniline) | USACE | U.S. Army Corps of Engineers | | NAPL | Nonaqueous phase liquids | USDA | U.S. Department of Agriculture | | NFEC | Navy Facilities Engineering Command | VOC | Volatile organic compound | | | | | | #### **OVERVIEW** #### Introduction The Technology Innovation Office (TIO) of the U.S. Environmental Protection Agency's (EPA) Office of Solid Waste and Emergency Response (OSWER) has prepared this *Innovative Treatment Technologies: Annual Status Report* to document the use of innovative treatment technologies to remediate both Superfund and non-Superfund sites. The report contains site-specific information on Superfund sites (both remedial and removal actions) and non-Superfund sites (sites addressed under other federal programs) at which innovative treatment technologies are being used. Site managers can use this report in evaluating cleanup alternatives. Innovative technology vendors can use it in identifying potential markets. TIO also uses the information to track progress in the application of innovative treatment technologies. The report is now updated annually. This September 1993 issue of the report updates and expands information provided in the October 1992 report. Information added to this update includes 59 innovative treatment technologies selected for remedial actions in fiscal year (FY) 1992 Superfund records of decision (ROD)—a ROD is the decision document used to specify the way a site, or part of a site, will be remediated—and information on 3 other completed projects. The report also includes 15 additional innovative treatment technologies selected for removal actions and 6 additional applications under other federal programs. #### What Are Alternative and Innovative Treatment Technologies? Alternative treatment technologies are alternatives to land disposal. The most frequently used alternative technologies are incineration and solidification/stabilization. Innovative treatment technologies are alternative treatment technologies for which applications at Superfund and similar sites are inhibited by lack of data on performance and cost. In general, a treatment technology is considered innovative if it has had limited full-scale application. Often, it is the application of a technology or process to soils, sediments, sludge, and solid-matrix waste (such as mining slag) that is innovative. Groundwater treatment after the water has been pumped to the surface often resembles traditional water treatment technologies; thus, in general, pump-and-treat or ex situ groundwater remedies are considered established. In situ bioremediation and other in situ treatment of groundwater, however, are considered innovative technologies. This report documents the use of the following innovative treatment technologies to treat soils, sediments, sludge, and solid-matrix waste: - Bioremediation (Ex Situ) - Bioremediation (In Situ) - Chemical treatment - Dechlorination - · In situ flushing - In situ vitrification - Soil vapor extraction - Soil washing - Solvent extraction - Thermal desorption - Other technologies (e.g., air sparging, contained recovery of oily wastes, limestone barriers, and furning gasification) In addition, the 12 remedial sites that are using in-situ bioremediation for groundwater remediation are included with the in situ bioremediation projects. #### **Sources of Information for This Report** EPA initially used RODs from individual sites to compile information on remedial actions and pollution reports, on-scene coordinators' reports, and the OSWER Removal Tracking System to compile data on emergency response actions. The U.S. Army Corps of Engineers Hazardous, Toxic, Radioactive Waste (HTRW) Mandatory Center of Expertise (Omaha, Nebraska) and the Synopses of Federal Demonstrations of Innovative Site Remediation Technologies. Second Edition (EPA/542/B-40/003) were consulted to compile information on projects under other federal programs. EPA then verified and updated the draft information through interviews with remedial project managers (RPM) and on-scene coordinators (OSC) and other contacts for each site. The data concerning project status do not duplicate data in CERCLIS, EPA's Superfund tracking system. This report provides more detailed information specifically on the portion of the remedy pertaining to an innovative technology. In addition, information about technologies and sites identified here might differ from information found in the ROD annual reports and the RODs database. These differences are the result of design changes in the treatment trains used at sites that may or may not require official documentation (that is, a ROD amendment or an explanation of significant differences (ESD)). #### **Definitions of Specific Innovative Treatment Technologies** The innovative treatment technologies reported in the following chapters treat hazardous wastes in very different ways. The following paragraphs define the technologies as they are represented in this document and provide summary statistics on some of the technologies. EX SITU BIOREMEDIATION uses microorganisms to degrade organic contaminants on excavated soil, sludge, and solids. The microorganisms break down the contaminants by using them as a food source. The end products are typically CO₂ and H₂O. Ex situ bioremediation includes slurry-phase bioremediation, in which the soils are mixed in water to form a slurry, and solid phase bioremediation, in which the soils are placed in a tank or building and tilled with water, and nutrients. Variations of the latter process are called land farming or composting. In applications of IN SITU BIOREMEDIATION, nutrients and an oxygen source are pumped under pressure into the soil or aquifer through wells, or they are spread on the surface for infiltration to the contaminated material. In CHEMICAL TREATMENT the contaminants are converted to
less hazardous compounds through chemical reactions. The technology is most often used to reduce a contaminant (hexavalent chromium to the trivalent form) or oxidize a contaminant (cyanide, for example). Neutralization is considered an available technology and is not included in this report. DECHLORINATION (another type of chemical treatment) results in the removal or replacement of chlorine atoms bonded to hazardous compounds. For IN SITU FLUSHING, large volumes of water, at times supplemented with treatment compounds, are introduced to soil, waste, or groundwater to flush hazardous contaminants from a site. This technology is predicated on the assumption that the injected water can be isolated effectively within the aquifer and recovered. IN SITU VITRIFICATION treats contaminated soil in place at temperatures of approximately 3000°F (1600°C). Metals are encapsulated in the glass-like structure of the melted silicate compounds. Organics may be treated by combustion. SOIL WASHING is used for two purposes. First, the mechanical action and water (sometimes with additives) physically remove the contaminants from the soil particles. Second, agitation of the soil particles allows the smaller diameter, more highly contaminated fines to separate from the larger soil particles, thus reducing the volume of material requiring further treatment. and the control of the second SOLVENT EXTRACTION operates on the principle that organic contaminants can be solubilized preferentially and removed from the waste in the correct solvent. The solvent used will vary, depending on the waste to be treated. For THERMAL DESORPTION, the waste is heated in a controlled environment to cause organic compounds to volatilize from the waste. The operating temperature for thermal desorption is usually less than 1000°F (550°C). The volatilized contaminants usually require further control or treatment. SOIL VAPOR EXTRACTION removes volatile organic constituents from the soil in place through the use of vapor extraction wells, sometimes combined with air injection wells, to strip and flush the contaminants into the air stream for further treatment. OTHER TECHNOLOGIES include air sparging and the contained recovery of oily wastes (CROW), limestone barriers, and fuming gasification technologies. Air sparging involves injecting air into the aquifer to strip or flush volatile contaminants as the air percolates up through the groundwater and is captured by a vapor extraction system. The CROW process displaces oil wastes with steam and hot water. The contaminated oils and groundwater are swept into a more permeable area and are pumped out of the aquifer. Limestone barriers act like chemical slurry walls. Contaminated groundwater comes into contact with the barrier and pH increases. The increase in pH effectively immobilizes dissolved metals and neutralizes the soil. Fuming gasification is a thermal treatment process that purges contaminants from solids and soils as metal fumes and organic vapors. The organic vapors can be burned as fuel and the metal fumes can be recovered and recycled. The following chapters contain detailed information and analysis on sites at which innovative treatment technologies are being or have been applied. Chapter 1 covers all Superfund sites implementing an innovative treatment technology under a remedial action. These actions are usually documented in a ROD. Chapter 2 provides information on Superfund removal action sites. Removals are conducted in response to an immediate threat caused by a release of hazardous substances.* Chapter 3 covers non-Superfund sites or sites being addressed under other federal programs. ^{*} Historically, remedial and removal actions operate under different procedural guidelines. The EPA currently is revising the Superfund process under the Superfund Accelerated Cleanup Model (SACM). Under SACM, EPA will adopt a continuous process for assessing site specific conditions and the need for action. Risks will be reduced quickly through early remedial or removal action. ## Chapter 1 Superfund Remedial Actions THIS PAGE INTENTIONALLY LEFT BLANK #### SUPERFUND REMEDIAL ACTIONS #### **Frequency of Technology Selection** ROD Statistics As of September 30, 1992, EPA has listed 1,275 sites on the National Priorities List (NPL). Through Fiscal Year (FY) 1992 ending September 30, 1992, 1,117 RODs (including ROD Amendments) had been signed. Most RODs for remedial actions address the source of contamination, such as soil, sludge, sediments, solid-type wastes, and nonaqueous phase liquids (NAPL). These RODs are referred to as "source control" RODs. Other RODs address ground water only or specify that no action is necessary. Figure 1-1 shows the number of source control RODs compared with the total number of RODs for each fiscal year. An analysis of source control RODs allows a comparison of the frequency of selection of treatment with that of selection of containment or disposal to remedy contamination at sites. Source control RODs are classified by the general type of technology selected: (1) RODs specifying some alternative treatment, (2) RODs specifying containment or disposal only, and (3) RODs specifying other action (such as land use restrictions, monitoring, or relocation). Figure 1-2 shows the number of source control RODs that fall under each category. RODs in which some treatment is selected may include containment of treatment residuals or of waste from another part of the site. Overall, 63 percent of source control RODs have selected at least one treatment technology for source control (Figure 1-3). The Superfund Amendments and Reauthorization Act of 1986 (SARA) required that EPA favor permanent remedies (that is, alternative treatment) over containment or disposal to remediate Superfund sites. In each year following the passage of SARA, more than 70 percent of the RODs contain provisions for the treatment of wastes. The increase is most dramatic in FY1988. Fifty percent of RODs in FY 1987 selected some treatment for source control, whereas 69 percent of RODs in FY 1988 selected some treatment (Figure 1-4). The percentage was 72 percent in FY 1992. Figure 1-4 also illustrates the percentage of RODs selecting at least one *innovative technology*, as updated by current project status information. Out of a total of 795 source control RODs signed through FY 1992, innovative technologies were selected and are still being considered or used for approximately 27 percent of source control RODs. Overall, 19 percent of all RODs have included innovative technologies. <u>Technology Statistics</u> Another way of illustrating the greater use of treatment is by quantifying the number and kinds of treatment technologies selected and used. Most of the remainder of the information contained in this chapter focuses on technologies, rather than RODs. In each ROD in which treatment was specified, several alternative treatment technologies may have been selected. Through FY 1992, 586 treatment technologies have been selected in 504 source control RODs specifying some treatment. In addition, EPA has selected in situ bioremediation of ground water for 11 remedial sites for a total 597 treatment technologies. EPA selected in situ bioremediation of groundwater for four remedial sites in FY 1992. The selection of multiple technologies results from the use of treatment trains or from the treatment of different wastes or areas of the site. For the 504 RODs specifying treatment for source control, Figure 1-5 lists each type of treatment technology selected and how often it has been selected or used for source control. Figure 1-5 illustrates that, through FY 1992, 44 percent of the 598 treatment technologies selected were innovative and 56 percent were established. Tables 1-1, 1-2, and 1-3, appearing at the end of this section, contain summary information on the innovative treatment technology projects at remedial sites. Table 1-4 lists sites using established technologies. Information on the established treatment technologies is based on a review by the Office of Emergency and Remedial Response (OERR) rather than interviews of Regional or State staff. # FIGURE 1-5 SUPERFUND REMEDIAL ACTIONS: SUMMARY OF ALTERNATIVE TREATMENT TECHNOLOGIES SELECTED THROUGH FISCAL YEAR 1992 (Total Number of Technologies = 598) #### Innovative Technologies (263) 44% Note: Data are derived from 1982 – 1992 Records of Decision (RODs) for fiscal years and anticipated design and construction activities as of June 1993. More than one technology per site may be used. - () Number of times this technology was selected or used. - * "Other" established technologies are soil aeration, in situ flaming, and chemical neutralization. "Other" innovative technologies are air sparging, contained recovery of oily wastes, limestone barriers, and fuming gasification. - # Includes 11 in situ groundwater treatment remedies. Figure 1-6 compares the numbers of established and innovative technologies by fiscal year. The figure indicates that more innovative technologies than established technologies have been selected in RODs in the previous two years (FY 1991 and FY 1992). Figure 1-7 compares the number of innovative technologies selected with the number of sites. This graph illustrates that some sites are using more than one innovative technology, often together in "treatment". trains." The figure also indicates that the ratio of innovative technologies to sites has increased every year since FY 1986. Figure 1-8 gives the frequency of selection for each innovative technology by fiscal year. Figure 1-9 shows the frequency of selection for the four most frequently selected innovative treatment technologies, including soil vapor extraction by fiscal year. # FIGURE 1-8 SUPERFUND REMEDIAL ACTIONS: INNOVATIVE TREATMENT TECHNOLOGIES BY YEAR Fiscal Year | | riscai Year | | | | | | | | | | |--------------------------|-------------|-------------|--------|------|------|------|------
------|------|-------| | | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | TOTAL | | Soil Vapor Extraction | 0 | 2 | 1 | 1 | 10 | 19 | 19 | 34 | 20 | 107 | | Bioremediation (Ex Situ) | | 0 | | Ö | 5 | 8 | 4 | 14 | | 34 - | | Thermal Desorption | 0 | 1 | 2 | 3 | 4 | 2 | 6 | 11 | 4 | 32 | | Bioremediation (In Situ) | o. | 0 | ₹ 0 ; | 2 | 3 | 3. | 4 | 6 | 8 | 26 | | Soil Washing | 0 | 0 | 0 | 0 | 5 | 3 | 6 | 2 | 4 | 20 | | In Situ Flushing | 70 | | | 0, | 3 | 3.3 | 2 | 4 | 6 | 20 | | Other | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 4 | 8 | | Dechlorination | 70 | 30 5 | 0 | Tok | 0 | 0 | | 3 | 100 | 5 | | Solvent Extraction | 0 | . 0 | 0 | 0. | 0 | 4 | 0 | 1 | 0 | 5 | | Chemical Treatment | 0 | . 0 | \$ 0 F | | 90 | 0 | 0.5 | 0 | 2 | 3 | | Vitrification . | 0 | 0 | 0 | 0 | 0 | 11 | 11 | 1 | 0 | 3 | | TOTAL | £ 18 | 5 | \$ 5 | 7 | 30 | 44 | 43 | 69 | -59 | 263 | NOTE: Data derived from Fiscal Year 1982 - 1992 Records of Decision (RODs) and anticipated design and construction activities as of June 1993 FIGURE 1-9 SUPERFUND REMEDIAL ACTIONS: TRENDS IN THE SELECTION OF FOUR INNOVATIVE TREATMENT TECHNOLOGIES * Also includes in situ groundwater treatment. NOTE: Data derived from Fiscal Year 1982 - 1992 Records of Decision (RODs) and anticipated design and construction activities as of June 1993 #### Status of Innovative Technology Implementation Many of the innovative technologies documented in this report have been selected in the last several years. The design of such projects typically takes one to three years; therefore, relatively few innovative technologies have been contracted for and installed, and even fewer have been completed (Figure 1-10). In the next several years, though, many projects now in design should become operational. Table 1-3 summarizes remedial action sites using innovative treatment technologies by status and specific technology. Table 1-6 presents detailed information on remedial projects that have been completed. FIGURE 1-10 SUPERFUND REMEDIAL ACTIONS: PROJECT STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF JUNE 1993 | | Predesign/
In Design | Design Complete/
Being Installed/
Operational | Project
Completed | Total | |-------------------------|-------------------------|---|----------------------|-------| | Soil Vapor Extraction | 69 | 32 | 6 | 107 | | Ex Situ Bioremediation | 22 | 11 | 1 | 34 | | Thermal Desorption | 20 | 8 | 4 | . 32 | | In Situ Bioremediations | 16 | 9 | -1 | 26 | | Soil Washing | 17 | 3 | 0 | 20 | | In Situ Flushing | 16 | 4 | 0 | 20 | | Dechlorination | 3 | 1 | 1 | 5 | | Solvent Extraction | 5 | 0 | 0 | 5 | | In Situ Vitrification | 3 | 0 | . 0 | 3 | | Chemical Treatment | 7 | 1 | 0 | 3 | | Other InnovativeTreatme | ent 2 | . 0 | 1 - | 8 | | TOTAL | 180 (69%) | 69 (26%) | 14 (5%) | 263 | Note: Data are derived from 1982 – 1992 Records of Decision (RODs) and anticipated design and construction activities as of June 1993. # Also includes in situ groundwater treatment. #### Contaminants Addressed by Innovative Treatment Technologies The data collected for this report form the basis for an analysis of the classes of contaminants treated by each technology type at remedial action sites. Figure 1-11 provides this information, by technology, for three major contaminant groups: volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and metals. For this report, compounds are categorized as VOCs or SVOCs, according to the lists provided in EPA's SW-846 Test Methods 8240 and 8270, respectively. #### **Quantity of Soil Addressed** EPA analyzed the quantity of soil treated at 183 sites using innovative treatment technologies, and for which quantity data were available (Figure 1-12). This analysis provides an indication of the scale of the projects involved. #### **Treatment Trains** Innovative treatment technologies in this report may be used with established or other innovative treatment technologies in treatment trains. Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. Figure 1-13 presents the data on treatment trains contained within this report. Table 1-5 lists the sites at which treatment trains are being used. FIGURE 1-12 SUPERFUND REMEDIAL ACTIONS: QUANTITIES OF SOIL TO BE TREATED BY INNOVATIVE TECHNOLOGIES | | Number Of Sites With Data | | Quantity (Cubic Yards) | | |--------------------------|---------------------------|-----------------|------------------------|-----------| | Technology | (Without Data) | Range | Average | Total | | In Situ Flushing | 12 (20) | 130 - 650,000 | 86,000 | 1,035,330 | | Soil vapor extraction | 75 (107) | 62 - 2,000,000 | 76,000 | 5,729,315 | | Bioremediation (in situ) | 10 (26) | 5,000 - 258,000 | 72,000 | 720,900 | | Soil washing | 18 (20) | 1,800 - 200,000 | 38,000 | 686,900 | | Sovent extraction | 5 (5) | 15,000 - 67,000 | 32,500 | 162,500 | | Bioremediation (ex situ) | 27 (34) | 1,000 - 120,000 | 30,000 | 810,695 | | Thermal desorption | 27 (32) | 2,000 - 130,000 | 24,000 | 650,900 | | Dechlorination | 3 (5) | 16,000 - 49,000 | 22,000 | 65,000 | | Vitrification | 3 (3) | 3,600 - 5,000 | 4,400 | 13,200 | | Chemical treatment | 2 (3) | 800 - 12,700 | 400 | 800 | | Other | 1 (8) | 200 - 200 | 200 | 200 | | TOTAL | 183 (263) | | | 9,800,470 | # FIGURE 1-13 SUPERFUND REMEDIAL ACTIONS: TREATMENT TRAINS WITH INNOVATIVE TREATMENT TECHNOLOGIES TOTAL TREATMENT TRAINS = 38 #### **TABLE 1-1** #### REMEDIAL ACTIONS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY Table 1-1 is the principal part of this chapter. It contains the most detailed, site-specific information for remedial sites for which an innovative treatment has been selected. The columns of Table 1-1 present the following information: #### Region This column indicates the EPA Region in which the site is located. #### Site Name, State, ROD Date This column identifies the site and the operable unit for which an innovative treatment technology was selected. A Record of Decision (ROD) documents the selection of remedy in the remedial program. The date shown in this column is the date on which a ROD was signed by an EPA official. An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site. #### **Specific Technology** The second column describes the specific technology selected within a general category of innovative treatment. For example, within the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be chosen. #### **Site Description** This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently selected innovative technology for wood preserving sites. #### Media (quantity) This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been made to include the maximum depth of the treatment to provide the reader with another parameter significant to the application. #### **TABLE 1-1 (Continued)** #### **Key Contaminants Treated** The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. Other contaminants may also be listed that may be treated. Other contaminants that may be present, but that are not to be addressed by the listed technology, are not included. #### Status This column indicates the status of the application of the innovative treatment technology. **Predesign** indicates that the ROD has been signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is in **design**, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is **being installed**, the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is **operational** if it is completely installed and it is now being operated as a treatment system; the remedy is **completed** if the goals of the ROD or decision document for that treatment technology have been met and treatment has ceased. One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the project. Whenever possible, the season and year in which the current phase will end is given. The information is identified as the "completion planned" date. #### **Lead Agency, Treatment Contractor** The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties will conduct the remedy with oversight by EPA or the State (PRP lead). If a remedy is Fund lead, EPA may manage the design/construction through its contractors, the state may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may act for EPA to manage the design or construction. No matter what agency or organization is responsible for managing the remedy, the contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead organization has selected a contractor. #### Contacts/Phone This final column provides the names and telephone numbers of useful contacts for the site or technology. The first name listed is usually the EPA remedial project manager (RPM) responsible for the site. If a remedy is being managed by the state, the name and phone number of the state RPM also is provided.
Information on other useful contacts may also be provided. #### Table 1-1 Remedial Actions: Site-Specific Information By Innovative Treatment Technology #### Bioremediation (Ex situ) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|--|--------------------------------|--|--|--------------------------------| | 1 | Iron Horse Park*, MA
(09/15/88) | Land treatment | Industrial and railyard waste | Sludge (25,000
cy) | VOCs, PAHs | Operational;
Completion
planned
Summer 1995 | PRP
lead/Federal
oversight; ENSR
Consulting | Don McElroy
617-223-5571 | | 2 | General Motors/Central
Foundry Division, OU
1, NY (12/17/90) | Slurry phase | Machine shops,
Engine casting
facility | Soil (100,000
cy), Sludge
(91,000 cy),
Sediments (62,000
cy) | PCBs | Predesign; PD
Completion
planned
Summer 1994 | PRP
lead/Federal
oversight | Lisa Carson
212-264-6857 | | 2 | General Motors/Central
Foundry Division, OU
2, NY (03/31/92) | Slurry phase | Aluminum casting
plant | Soil (59,000 cy) | PCBs | Predesign; PD
Completion
planned
Summer 1994;
Final
technology
selection
will take
place after
treatability
study is
complete in
12/93 | PRP
lead/Federal
oversight | Lisa Carson
212-264-6857 | | 3 | Whitmoyer
Laboratories, OU 3, PA
(12/31/90) | Bioremediation
(Ex Situ) To be
used with iron
based fixation | Other organic
chemical
manufacturing | Soil (5,600 cy),
Sediments
(quantity
unknown) | VOCs (TCE), SVOCs
(Aniline) | In design;
Design
completion
planned Fall
1995 | PRP
lead/Federal
oversight;
Environ | Chris Corbett
215-597-8186 | | 3 | L.A. Clarke & Sons,
Lagoon Sludge OU, VA
(03/31/88) | Slurry phase in
tanks | Wood preserving | Sludge (278 cy) | PAHs (Creosote) | In design;
Design
completion
planned
Winter 1993 | PRP
lead/Federal
oversight; ICF
Kaiser | Andy Palestini
215-597-1286 | Status as of June 1993. See Table 1-6 for performance and operational data on completed remedial projects. Indicates that a treatability study has been completed. Contacts listed are EPA regional staff unless otherwise noted. 1-11 Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (QLantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|--------------------------------------|--|--|---|--| | 3 | Ordnance Works
Disposal Areas, WV
(09/29/89) | Land treatment | Other organic
chemical
manufacturing,
Other inorganic
chemical
manufacturing | Soil (13,500 cy) | PAHs
(Carcinogenic
PAHs) | Predesign; PD
Completion
planned Fall
1993 | PRP
lead/Federal
oversight; ABB
Environmental | Helissa
Whittington
215-597-1286 | | 4 | Brown Wood
Preserving*, FL
(04/08/88) | Land treatment | Wood preserving,
Drum storage/
disposal | Soil (7,500 cy) | PAHs (Creosote) | Completed;
Operational
from 10/88 to
12/91 | PRP
lead/Federal
oversight;
Remediation
Technology,
Inc. | Martha Berry
404-347-2643 | | 4 | Cabot Carbon/Koppers,
FL (09/27/90)
See also
Bioremediation (In
Situ), Soil Washing | Slurry phase
(preceded by
soil washing) | Wood preserving,
Pine tar and
turpentine
manufacturing | Soil (quantity
unknown) | SVOCs (PCP), PAHs | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight
McLaren-Hart | Martha Berry
404-347-2643 | | 4 | Dubose Oil Products*,
FL (03/29/90) | Solid phase
Windrowing with
aeration and
irrigation in a
barn | Petroleum refining
and reuse | Soil (20,000 cy) | VOCs (TCE, DCE,
Benzenes,
Xylenes), SVOCs
(PCP), PAHs | Being installed; Installation completion planned Summer 1993; Pilot scale work to begin in Sept. 1993. This will be Phase 1 of RA. | PRP
lead/Federal
oversight;
Watech | Mark Fite
404-347-2643
George Linder
(FL)
904-488-0190 | | 4 | Whitehouse Waste Oil
Pits (amended ROD)*,
FL (06/16/92)
See also Soil Washing | Slurry phase
(preceeded by
soil washing) | Waste oil recycler | Soil/Sludge
56,930 cy
Combined | VOCS, PCBS, PAHS
BTEX | In design;
Design
completion
planned
Winter 1993 | Federal
lead/Fund
Financed | Tony Best
404-347-2643 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|---------------------------------------|--|--|--|---| | 4 | Benfield Industries,
NC (07/31/92)
See also
Bioremediation (In
Situ), Soil Washing | Slurry phase
preceeded by
soil washing | Bulk chemical
mixing and
repackaging plant. | Soil/Slurry
(4,600 cy
combined) | VOCs, SVOCs | Predesign | Federal
lead/Fund
Financed; CDM,
F.I.P.
Corporation | John Bornholm
404-347-7791 | | 4 | Cape Fear Wood
Preserving, NC
(06/30/89)
See also Soil Washing | Slurry phase may
be followed by
s/s | Wood preserving | Soil (24,000 cy) | VOCs, PAHs | Design completed but not installed; Project on hold due to capacity assurance issue. | Federal
lead/Fund
Financed | Jon Bornholm
404-347-7791 | | 4 | Charles Macon Lagoon,
Lagoon #10, NC
(09/30/91) | Solid phase | Oil recycling and reuse | Soil (1,000 cy) | SVOCs
(Fluoranthene),
PAHs
(Benzo(a)pyrene,
Benzo(a)
anthracene,
Chrysene) | In design; Design completion planned Summer 1994; Currently negotiating with PRPs | PRP
lead/Federal
oversight; RMT | Jack Butler
919-733-2801 | | 5 | Galesburg/Koppers, IL
(06/30/89) | Land treatment | Wood preserving | Soil (15,200 cy) | SVOCs (PCP,
Phenols), PAHs
(Creosote) | Predesign; PD
Completion
planned Fall
1993 | PRP lead/State
oversight;
Remediation
Technologies,
Inc. | Brad Bradley
312-886-4742
Steve Davis
(IL)
217-785-3913 | | 5 | Cliffs/Dow Dump*, MI
(09/27/89) | Bioremediation
(Ex Situ) forced
aeration
biological
treatment | Waste disposal for
charcoal
manufacturing
plant | Soil (9,500 cy) | VOCs (TCE, BTEX),
SVOCs (Phenol),
PAHs
(Naphthalene) | In design;
Design to be
completed in
Summer 1994. | PRP
lead/Federal
oversight; ENSR | Ken Glatz
312-886-1434 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---------------------------------|---|--|---|---|--| | 5 | Burlington Northern
Railroad Tie Treating
Plant*, MN (06/04/86) | Land treatment | Wood preserving | Soil (9,500 cy),
Sludge (9,600 cy) | SVOCs (Phenols),
PAHs | Operational;
Completion
planned 1994 | PRP/State-
Federal
oversight;
Remediation
Technologies,
Inc. | Tony Rutter 312-886-8961 Fred Jenness (MN) 612-297-8470 Richard Truax (RETEC) 303-493-3700 | | 5 | Joslyn Manufacturing
and Supply Co., MN | Land
treatment
Unlined
treatment unit
with irrigation
and tilling | Wood preserving | Soil (75,000 cy) | SVOCS (PCP), PAHS | Operational; .
Completion
planned Fall
1994 | PRP lead/State
oversight; BARR
Engineering/ GL
Contracting
Inc. | Kevin Turner
312-886-4444
Ann Bidwell
(MN)
612-296-7827 | | 5 | South Andover Salvage
Yard OU 2, MN
(12/24/91) | Solid phase | Salvage yard | Soil (11,400 cy) | PAHS | Predesign | Federal
lead/Fund
Financed | Bruce
Sypniewski
312-886-6189 | | 5 | Moss-American*, WI
(09/27/90)
See also Soil Washing | Sturry phase
(preceded by
scil washing) | Wood preserving | Soil (80,000 cy),
Sediments (5,200
cy) | PAHs | Predesign; PD
Completion
planned 1994;
Bench-scale
study is
underway | PRP lead/Federal oversight; Weston, Inc.(prime)/IT Corporation(sub contractor) | Bonnie Eleder
312-886-4885 | | 6 | Old Inger Oil
Refinery*, LA
(09/25/84) | Land treatment | Petroleum refining
and reuse | Soil (120,000
cy), Sludge
(quantity
unknown) | VOCs (Benzene,
Ethylbenzene),
PAHs (Petroleum
hydrocarbons) | Operational;
Completion
planned Fall
2001 | State lead/Fund
Financed;
Westinghouse
Haztech
(installation),
Operation to be
awarded
Spring,1992 | Paul Sieminski
214-655-6710
Mike Hahn (LA)
504-765-0487 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---------------------------------|--|--|---|--|---| | 6 | Prewitt Abandoned
Refinery, NM
(09/30/92)
See also Soil Vapor
Extraction, Other
Technologies | Bioremediation
(Ex Situ) | Crude oil refinery | Soil (quantity
unknown) | VOCs (BTEX), PAĤS | Predesign | PRP
lead/Federal
oversight | Monica
Chapa-Smith
214-655-6780 | | 6 | Oklahoma Refining Co.,
OK (06/09/92)
See also
Bioremediation (In
Situ) | Bioremediation
(Ex Situ)
followed by
stabilization | Petroleum refining
and reuse | Soil/Sludge
(56,000 cy)
Sediments
(quantity
unknown) | VOCs, Organics
(LNAPLs) | Predesign | State lead/Fund
Financed | Noel Bennett
214-655-8514 | | 6 | North Cavalcade
Street*, TX (06/28/88) | Land treatment | Wood preserving | Soil (5,500 cy) | PAHs (Creosote) | In design;
Design
completion
planned
Summer 1993 | State lead/Fund
Financed | Glenn Celerier
214-655-8523
Stephen Chong
512-908-2441 | | 6 | Sheridan Disposal
Services*, TX
(12/29/88) | Slurry phase | Industrial
landfill | Soil (13,000 cy),
Sludge (30,000
cy) | VOCs (Benzene,
Toluene), SVOCs
(Phenols), PCBs | Predesign; PD
Completion
planned 1991;
Biotreatment
pilot study
conducted in
1991.
Awaiting
entry of
consent
decrees by
court. | PRP lead/State
oversight | Gary Baumgarten
214-655-6749 | ### Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Hame, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|------------------------|--------------------------|--|--|--|---|---| | 7 | Vogel Paint & Wax, IA
(09/20/89) | Land treatment | Paint/ink
formulation | Soil (10,000 cy) | VOCs (Methyl
Ethyl Ketone,
BTX) | Operational;
Completion
planned 1997;
One cell is
constructed.
20 % of
remediation
is
acomplished. | PRP lead/State
oversight;
Vogel | Jack Generaux
913-551-7690
Bob Drustrup
(IA)
515-281-8900 | | 8 | Broderick Wood
Products OU 2, CO
(03/24/92)
See also
Bioremediation (In
Situ) | Land treatment | Wood preserving | Soil (59,000 cy),
Sediments (120
cy) | VOCs, SVOCs
(PCP), Dioxins,
PAHs | Being installed; Installation completion planned Fall 1993; Currently conducting treatability tests | Federal
lead/Fund
Financed CH ₂ M
Hill | Armando Saenz
303-293-1532 | | 8 | Burlington Northern
(Somers Plant)*, MT
(09/27/89)
See also
Bioremediation (In
Situ) | Land treatment | Wood preserving | Soil (40,000 cy) | PAHs (Creosote) | Operational;
Completion
planned Fall
1993;
Operations
began Spring
1993 | PRP
lead/Federal
oversight;
Remediation
Technologies,
Inc. | Jim Harris
406-449-5414 | | 8 | Idaho Pole Company*,
MT (09/28/92)
See also
Bioremediation (In
Situ), In situ
Flushing | Land treatment | Wood preserving | Soil (19,000 cy),
Sediments (2,683
cy) | SVOCs (PCP), PAHs | Predesign | In negotiation | Jim Harris
406-449-5414 | ### Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|----------------------------|---|--|---|--| | 8 | Libby Groundwater
Contamination*, MT
(12/30/88)
See also
Bioremediation (In
Situ) | Land treatment using two 1-acre cells, soil is excavated & mixed | Wood preserving | Soil (45,000 cy) | VOCs (Benzene),
SVOCs (PCP), PAHs
(Creosote) | Operational;
Completion
planned 1999 | PRP
lead/Federal
oversight;
Woodward-Clyde | Jim Harris
406-449-5414
Bert Bledsoe
(RSKERL)
405-332-2313 | | 8 | Wasatch Chemical*, UT
(03/29/91)
See also In situ
Vitrification | Land treatment
on an asphalt
pad | Pesticide manufacturing/use /storage, Other organic chemical manufacturing, Other inorganic chemical manufacturing | Soil (1,100 cy) | VOCs (Toluene,
Xylene) | Operational;
Completion
planned
Summer 1993 | PRP
lead/Federal
oversight;
Harding/Lawson | Bert Garcia
303-293-1526 | | 9 | J.H. Baxter*, CA
(09/27/90) | Land treatment
to be followed
by fixation for
metals | Wood preserving | Soil (12,500 cy) | SVOCs (PCP),
Dioxins, PAHs | In design;
Design
completion
planned
September
1993 | PRP
lead/Federal
oversight;
PRP-James L.
Grant & Assoc.;
Fed SAIC and
SubCDM
Federal
Programs | Cathy Setian
415-744-2254 | | 9 | Jasco Chemical Co., CA
(09/30/92) | Bioremediation
(Ex Situ) may
combine aerobic
and anaerobic | Chemical blending
and repacking | Soil (1,095 cy) | VOCs (DCA,
Methylene
chloride,
Acetone, Xylene) | Predesign; PD
Completion
planned
Summer 1993 | PRP
lead/Federal
oversight | Rosemarie
Carroway
415-744-2235 | | 10 | McChord AFB Washrack
Treatment Area, AK
(09/28/92) | Bioremediation
(Ex Situ) | Federal facility
Airplane
Maintenance Area | Soil (quantity
unknown) | VOCs (Fuel
related
contaminants,
Benzene)
SVOCs | In design; Design completion planned Winter 1993; 30% of design completed 7/93 | Air Force/EPA
oversight | Marie Jennings
206-553-1173
Michael Grenko
206-984-3913 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 June 1993 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|------------------------|--------------------|------------------|--|---|--|---| | 10 |
Umatilla Army Depot
Activity, Soil
Operable Unit*, OR
(09/30/92) | Composting | Explosives washout | Soil (4,800 cy) | Explosives (TMT,RDX,2,4,6-tr initzotoluene,Tri nitrobenzene, DNT, Nitrobenzene, HMX, N-tertyl) | In design; Design completion planned Fall 1993; Excavation (Phase I)-design completion Fall 1993; Bio-design (Phase II)-predesign | Army lead/EPA
and State
oversight | Harry Craig
503-326-3689
Jeff Rodin
206-553-4497
Mark Dourghty
(US Army)
503-564-5294
Mike Nelson
(USACE Seattle)
206-764-3458 | ### Bioremediation (In situ) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|---|----------------------------|--|---|--|--| | 1 | Hocomonco Pond, ESD,
MA (07/30/92)
(ROD signed 09/30/85) | In situ ground
water if
bioremediation
fails will try
in sitü flushing | Wood preserving | Groundwater | PAHs (Creosote),
Organics (DNAPLs) | Being
installed;
Installation
completion
planned Spring
1994 | PRP
lead/Federal
oversight | Bob Leger
617-573-5734 | | 2 | FAA Technical Center*,
NJ (09/26/89)
See also Soil Vapor
Extraction | In situ ground
water | Jet fuel tank farm | Groundwater | VOCs (JP-4) | Design
completed but
not installed;
Design
completed 8/92 | Federal
facility, FAA
lead | Carla Struble
212-264-4595
Keith Buch
(FAA)
609-485-6644 | | 2 | Swope Oil & Chem Co.,
OU 2, NJ (09/27/91)
See also Soil Vapor
Extraction | In situ soil
Bioventing with
soil vapor
extraction | Chemical
reclamation | Soil (258,000 cy) | SVOCs
(Naphthalene,
DEHP,
2-ethylhexyl-
phalate) | Predesign; PD
Completion
planned 1993 | PRP
lead/Federal
Oversight | Joseph Gowers
212-264-5386 | | 2 | Applied Environmental
Services
(Groundwater), NY
(06/24/91) | In situ ground
water | Bulk petroleum and
hazardous waste
storage facility | Groundwater | VOCs (TEX) | In design;
Design
completion
planned Winter
1993 | PRP lead/State
oversight | Andrew English
(NY)
518-457-0315
Jeff Tradd
518-457-1708 | | 2 | Applied Environmental
Services, OU 1, NY
(06/24/91)
See also Soil Vapor
Extraction, Other
Technologies | In situ soil | Bulk petroleum and
hazardous waste
storage facility | Soil (quantity
unknown) | VOCs (BTEX),
SVOCs
(Naphthalene,
Bis(2-ethylhexyl)
phthalate,
Benzo(b)) | In design;
Design
completion
planned Winter
1993 | PRP lead/State
oversight;
Remediation
Technologies,
Inc Design
Contractor | Andrew English
(NY)
518-457-0315
Jeff Tradd
518-457-1708 | | 3 | L. A. Clarke & Sons,
OU 1 (Soils)*, VA
(03/31/88)
See also In situ
Flushing | In situ soil
follows creosote
recovery and in
situ flushing | Wood preserving | Soil (15,000 cy) | VOCs (Benzene),
PAHs (Creosote,
Carcinogenic
PAHs) | Predesign; PD
Completion
planned Fall
1994 | PRP
lead/Federal
oversight; ICF
Kaiser | Andy Palestini
215-597-1286 | | Region | Site Hame, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|-------------------|---|---|---|-------------------------------| | 4 | Cabot Carbon/Koppers,
FL (09/27/90)
See also
Bioremediation (Ex
Situ), Soil Washing | In situ soil
Treating
above/below gw
table by
nutrient
addition | Wood preserving,
Pine tar and
turpentine
manufacturing | Soil (5,000 cy) | SVOCs (PCP), PAHs | In design;
Design
completion
planned Spring
1994 | PRP
lead/Federal
oversight;
McLaren-Hart
(Design
contractor) | Martha Berry
404-347-2643 | | 4 | Cabot Carbon/Koppers
(Groundwater), FL
(09/27/90) | In situ ground water; treating above and below gw table with nutrients | Wood preserving,
Pine tar and
turpentine
manufacturing | Groundwater | SVÕCs (PCP), PAHS | In design;
Design
completion
planned Spring
1994 | PRP
lead/Federal
oversight
McLaren-Hart
(Design
Contractor) | Martha Berry
404-347-2643 | | 4 | Benfield Industries,
NC (07/31/92)
See also
Bioremediation (Ex
Situ), Soil Washing | In situ ground
water; treatment
of aquifer soils
incidental to gw
remediation | Bulk chemical
mixing and
repackaging plant. | Groundwater | VOCs, SVOCs | Predesign | Federal
lead/Fund
Financed;
CDM/F.I.P.
Corporation | John Bornholm
404-347-7791 | | 5 | Seymour Recycling, IN
(09/30/87)
See also Soil Vapor
Extraction | In situ soil
Nutrients plowed
into soil | Chemical waste
management and
incineration | Soil (190,000 cy) | VOCs (TCA, Carbon
Tetrachloride,
TCE) | Completed;
Operational,
Summer 1990,
August-October
1986, January-
February 1987 | PRP
lead/Federal
oversight; ABB
Environmental
Services | Jeff Gore
312-886-6552 | | 5 | Seymour Recycling
(Groundwater), IN
(09/30/87) | In situ ground
water Gw
treatment
incidental to
soil treatment | Chemical waste
management and
incineration | Groundwater | VOCS, SVOCS, PAHS | Operational; Gw treatment was not designed but appears to be occuring as a result of in situ soil treatment | PRP
lead/Federal
oversight;
Geraghty Miller | Jeff Gore
312-886-6552 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|---|--|---|---|--------------------------------------| | 5 | Allied Chem & Ironton
Coke, OU 2*, OH
(12/28/90) | Bioremediation
(In Situ) of
lagoon sediments | Coke manufacturing | Sediments
(457,000 cy) | PAHS | In design;
Design
completion
planned Spring
1994 | PRP
lead/Federal
oversight; IT
Corporation -
Design, Black &
Veetch -
subcontractor | Jim Van der
Kloot
312-353-9309 | | 5 | Hagen Farm Site,
Groundwater Control
OU, WI (09/30/92) | In situ ground
water | Industrial
landfill,
Municipal landfill | Groundwater | VOCs (Vinyl
chloride, MEK,
Tetrahydrofuran,
Xylene) | In design;
Design
completion
planned Spring
1995 | PRP
lead/Federal
oversight;
Warzyn - Prime | Steve Padovani
312-353-6755 | | 5 | Onalaska Municipal
Landfill*, WI
(08/14/90) | In situ soil Air
injection but no
nutrient or
microbe addition | Municipal landfill | Soil (16,000 cy) | PAHs
(Naphthalene) | Design completed but not installed; Completion planned Spring 1994; Completed 3 month column study with higher contamination. | Federal
lead/Fund
Financed; CH2M
Hill-prime | Kevin Adler
312-886-7078 | | 6 | Atchison/Santa
Fe/Clovis, NM
(09/23/88) | In situ soil | Railyard wastes
(diesel spills) | Soil (28,600 cy),
Sludge (quantity
unknown) | PAHs (Petroleum
hydrocarbons,
diesel fuel) | Operational; Began in June 1992, will end when petroleum hydrocarbons are less than 1,000 ppm | PRP
lead/Federal
oversight;
Radian
Corporation | Ky Nichols
214-655-6783 | | 6 | Oklahoma Refining Co.,
OK (06/09/92)
See also
Bioremediation (Ex
Situ) | In situ soil | Petroleum refining
and reuse | Soil (43,300 cy) | VOCs, Organics
(LNAPLs) | Predesign | State lead/Fund
Financed | Noel Bennett
214-655-8514 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|--------------------|---|--
--|---|--| | 6 | French Limited, TX
(03/24/88) | Bioremediation
(In Situ) In
Situ Lagoon | Petrochemical | Sludge 300,000
cy) | VOCs, PAHs | Operational; Two 3.5 acre cells; First cell completed; second cell scheduled to be completed August 1993 | PRP lead/
Federal & State
oversight | Judith Black
214-655-6739 | | 7 | People's Natural Gas,
IA (09/16/91) | In situ soil | Coal gasification | Soil (18,500 cy),
Groundwater | VOCs (Benzene),
PAHs | Predesign; PD
Completion
planned Spring
1994 | PRP
lead/Federal
oversight; BARR
Engineering | Bill Bunn
913-551-7792 | | 7 | Pester Burn Pond, KS
(09/30/92)
See also In situ
Flushing | In situ soil
preceeded by in
situ soil
flushing | Refinery operation | Soil (70,000 cy) | PAHs
(Benzo(a)anthrace
ne, Chrysene) | Predesign | PRP
lead/Federal
oversight | Marvin
Glotzbach (KS)
913-296-2783 | | 8 | Broderick Wood
Products OU 2, CO
(03/24/92)
See also
Bioremediation (Ex
Situ) | In situ soil
Bioremediation | Wood preserving | Soil (59,000 cy)
Sediments (120
cy) | VOCs, SVOCs
(PCP), PAHs | Being installed; Installation completion planned Fall 1994; Currently conducting treatability tests | Federal
lead/Fund
Financed
CH ₂ M Hill | Armando Saenz
303-293-1532 | | 8 | Burlington Northern
(Somers Plant)*, MT
(09/27/89)
See also
Bioremediation (Ex
Situ) | In situ ground
water. | Wood preserving | Groundwater
(2 Areas, 20 ft.
deep and 30 ft.
deep) | SVOCs (Phenols),
PAHs (Creosote) | Being installed; Installation completion planned Fall 1993; Operational Fall 1993 | PRP
lead/Federal
oversight;
Remediation
Technologies,
Inc. | Jim Harris
406-449-5414 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|--|----------------------------------|---|---|--|--| | 8 | Idaho Pole Company*,
MT (09/28/92)
See also
Bioremediation (Ex
Situ), In situ
Flushing | In situ ground
water injection
of oxygen and
nutrients | Wood preserving | Groundwater | SVOCs (PCP) | Predesign | In negotiation | Jim Harris
406-449-5414 | | 8 | Libby Groundwater
Contamination*, MT
(12/30/88)
See also
Bioremediation (Ex
Situ) | In situ ground
water Injection
of H2O2 and
Potasium
tripolyphosate | Wood preserving | Groundwater (40-
80 ft. deep) | VOCs (Benzene),
SVOCs (PCP), PAHs
(Creosote) | Operational;
Completion
planned 2001;
Operation
began in
Spetember 1991 | PRP
lead/Federal
oversight;
Woodward-Clyde | Jim Harris
406-449-5414
Bert Bledsoe
(RSKERL)
405-332-2313 | | 9 | Castle Air Force Base,
OU 1, CA (09/30/91) | In situ ground water Treated gw to be reinjected w/ nutrients and H202 | Federal facility
with contamination
from multiple
sources | Groundwater | VOCs (TCE, PCE,
DCE, DCA, Carbon
tetrachloride,
Benzene) | In design; Design completion planned Fall 1992; 2 phases of construction; phase I-constrction started, phase II-to begin within 2 years | Federal facility, U.S. Air Force lead; James Montgomery/PRC Environmental Management, Inc. | Michael Work
415-744-2392
Brad Hicks
(USAF)
209-726-4841 | | 9 | Koppers Company, Inc.
(Oroville Plant), CA
(04/04/90)
See also Soil Washing | In situ soil
Followed by
fixation for
soil containing
metals | Wood preserving | Soil (100,000 cy) | SVOCs
(Polychlorinated
phenols), Dioxins | In design;
Design
completion
planned Summer
1993 | PRP
lead/Federal
oversight | Fred Schauffler
415-744-2365 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 June 1993 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|----------------------------|---|----------------------------|--|--|--|---| | 10 | Eielson Air Force
Base*, AK (09/29/92)
See also Soil Vapor
Extraction | In situ soil
Bioventing | Tactical air
support
installation | Soil (quantity
unknown) | VOCs (JP-4),
SVOCs, PAHs
(Petroleum
Hydrocarbons,
Diesel) BTEX | In design;
Design
completion
planned Summer
1993 | Federal
Facility/EPA
and State
oversight;
DERA; EA
Engineering
-Design | Mary Jane
Nearman
206-553-6642
Rielle Markey
(AK)
907-451-2117
Capt. Max Gandy
(Eielson AFB)
907-377-4361 | ### **Chemical Treatment** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|-------------------------------------|---------------------------------------|--|--|-------------------------------------| | 4 | JFD
Electronics/Channel
Master, NC (09/10/92) | Oxidation using
with hydrogen
peroxide | Solvent recovery facility | Soil (800 cy),
Sludge (2,200 cy) | Inorganic
Cyanides | Predesign; PD
Completion
planned Summer
1994 | In negotiation | McKenzie
Mallary
404-347-7791 | | 4 | Palmetto Wood
Preserving*, SC
(09/30/87) | Reduction of
Cr(6) to Cr(3)
using Sodium
metaphosphate | Wood preserving | Soil (12,700 cy) | Metals (Chromium,
Arsenic, Copper) | Completed;
Operational
from 9/88 to
2/89 | Federal
lead/Fund
Financed; Roy
F. Weston | Al Cherry
404-342-7791 | | 8 | Portland Cement Co.
(Kiln Dust No.2 and
No.3) OU 2, UT
(03/31/92) | Chemical
Treatment | Cement plant
(Waste chrome
bearing bricks) | Solids (360 Tons
of Brick) | Metals (Chrome
VI) | In design;
Design
completion
planned Summer
1994 | State lead/Fund
Financed; URS
Consultants | Mike McCeney
303-294-7169 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 ### Dechlorination | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|--|---|---|---|--------------------------------| | 2 | Myers Property, NJ
(09/28/90)
See also Soil Washing | Dechlorination
followed by
soil washing | Pesticide
manufacturing/use
/storage | Soil (49,000 cy),
Sediments (1,000
cy) | SVOCs (Hexachlorobenzene), Biocides (DDT, DDE, DDD), Dioxins (2,3,7,8-TCDD) | In design; Design completion planned Winter 1994; Design initiated concurrently with treatability studies | PRP
lead/Federal
oversight;
Metcalf & Eddy | John Prince
212-264-1213 | | 2 | Wide Beach
Development, NY
(09/30/85) | Dechlorination
with APEG | Contaminated road
dust, driveways,
ditches | Soil (40,000 cy) | PCBs | Completed;
Operational
from 10/90 to
6/91 | Federal
lead/Fund
Financed;
Soiltech Inc.
(subonctractor
to Kimmins) | Herb King
212-264-1129 | | 3 | Saunders Supply Co, OU
1, VA (09/30/91)
See also Thermal
Desorption | Dechlorination | Wood preserving | Sludge (700 cy) | Dioxins (TCDD
equivalents) | Predesign; PD
Completion
planned Fall
1993 | Federal
lead/Fund
Financed;
Ecology &
Environment, no
vendor yet | Andy Palestini
215-597-1286 | | 4 | Smith's Farm Brooks,
OU 1*, KY (09/30/91)
See also Thermal
Desorption | Dechlorination | Drum
storage/
disposal | Soil (16,000 cy) | PCBs | Design
completed but
not
installed;
Completion
planned
Spring 1995 | PRP
lead/Federal
oversight
Soiltech | Tony DeAngelo
404-347-7791 | | 4 | Arlington Blending & Packaging Co., OU 1*, TN (06/28/91) See also Thermal Desorption | Dechlorination | Pesticide
manufacturing/use
/storage, Other
organic chemical
manufacturing | Liquid (quantity
unknown) | VOCs (DCE), SVOCs
(PCP), Biocides
(Chlordane,
Heptaclor) | In design;
Design
completion
planned
Winter 1993 | PRP
lead/Federal
oversight | Derek Matory
404-347-7791 | ## In Situ Flushing | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|--|---------------------------------|---|---|--|--| | 1 | Tibbetts Road*, NH
(09/29/92)
See also Soil Vapor
Extraction | Soil flushing | Illegal dumping
site, primarily
painting wastes
and solvents. | Soil (50,000 cy) | VOCs (PCE, TCE),
Metals (Arsenic,
Chromium) | Predesign | Still in
negotiation | Darryl Luce
617-573-5767
Mike Robinette
(NH)
603-271-2014 | | 2 | Lipari Landfill*, NJ
(09/30/85) | Soil flushing
Flushing of area
within the
slurry wall,
including soil
and wastes. | Industrial
landfill,
Municipal landfill | Soil (650,000 cy) | VOCs (Bis-2-
chloroethylether,
DCA,
Dichloromethane),
SVOCs (Phenol),
Metals (Chromium,
Lead, Nickel,
Mercury) | Operational;
Completion
planned 1999 | Federal
lead/Fund
Financed; AWD,
Inc. | Fred Cataneo
212-264-9542 | | 2 | Naval Air Engineering
Center OU 7, interim
action, NJ (03/16/92) | Soil flushing | Federal facility-
landfill, fire
fighting training
areas, and other
disposal | Soil (quantity
unknown) | VOCs (Vinyl chloride, TCE, PCE, and 1,2-DCE, BTEX), PAHs (Petroleum hydrocarbons) | In design; Interim remedial action to be implemented for 3 years. | U.S. Navy/EPA
oversite;
Aguilar | Jeff Gratz
212-264-6667
Robert Wing
212-264-8670 | | 2 | Vineland Chemical, OU
1 and OU 2, NJ
(09/29/89)
See also Soil Washing | Soil flushing
Flushing lagoons
using treated gw | Pesticide
manufacturing/use
/storage | Soil (126,000 cy) | Metals (Arsenic) | In design;
Design
completion
planned 1993 | Federal
lead/Fund
Financed
EBASCO-Design | Matthew
Westgate
212-264-3406
Steve Hadel
(USACE-Kansas
City)
816-426-5221 | | 2 | Byron Barrel & Drum,
NY (09/29/89) | Soil flushing | Drum storage/
disposal | Soil (5,200 cy),
Groundwater | VOCs (TCE, DCE,
TCA, MEK), Metals
(Chromium, Lead) | Predesign; PD
Completion
planned Fall
1994 | PRP
lead/Federal
oversight;
Dames and Moore | Eduardo
Gonzales
212-264-5714 | | 2 | Pasley Solvents and
Chemicals, Inc., NY
(04/24/92)
See also Soil Vapor
Extraction | Soil flushing | Tank farm and
chemical
distribution
facility | Soil (13,000 cy) | SVOCs
(Naphthalene) | In design | Federal
lead/Fund
Financed;
Ebasco - Design
contractor | Sherrel Henry
212-264-8675 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 ### In Situ Flushing (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|---|--|---|--|--| | 3 | L. A. Clarke & Sons,
OU 1 (Soils)*, VA
(03/31/88)
See also
Bioremediation (In
Situ) | Soil flushing
with surfactants
before in situ
bioremediation | Wood preserving | Soil (15,000 cy) | VOCs (Benzene),
PAHs (Creosote,
carcinogenic
PAHs) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight; ICF
Kaiser | Andy Palestini
215-597-1286 | | 3 | U.S. Titanium*, VA
(11/21/89) | Dissolution of wastes (EPA is considering excavation and ex situ dissolution of wastes) | Titanium oxide
production from
ore digested with
sulfuric acid | Soil (16,000 cy),
Solids (16,000 cy) | Inorganics
(Ferrous sulfate) | In design;
Design
completion
planned Fall
1993 | PRP lead/State
Enforcement
lead; Scitech | Vance Evans
215-597-8485
Jeff Howard
(VA)
804-225-3262 | | 4 | Ciba-Geigy (MacIntosh
Plant) OU 4, AL
(07/14/92)
See also Thermal
Desorption | Soil flushing | Chemical
Manufacturing | Soil 110 cy | Chorinated pesticides, BHC Isomers, VOCs (Chloroform, Toluene, Xylenes), Biocides (Atrazine, Diazinon, Prometryn, Simazine), Metals (Copper, Lead, Arsenic, Chromium, Iron slurry) | Predesign;
Design also
will use
treatability
studies at
OU-2 | PRP
lead/Federal
oversight | Charles King
404-347-2643 | | 4 | Ciba-Geigy (MacIntosh
Plant) OU 2, AL
(09/30/91)
See also Thermal
Desorption | Soil flushing | Agriculture Applications, Pesticide manufacturing/use /storage, Other organic chemical manufacturing | Soil/Sludge (130
cy) | VOCs (BTEX) Chloroform, Biocides (DDD, DDT, DDE, BHCs, Diazinon, Chlorobenzilate) | Predesign; PD
Completion
planned
Winter 1995; | PRP lead/Federal oversight; CDM/FPC (Demolition/ Design contractors) | Charles King
404-347-2643 | #### In Situ Flushing (continued) | | | , <u>, , , , , , , , , , , , , , , , , , </u> | | · | , <u>, , , , , , , , , , , , , , , , , , </u> | | | | |--------|---|---|--|----------------------------------|--|---|---|--| | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | | 4 | JADCO-Hughes, NC
(09/27/90)
See also Soil Vapor
Extraction | Soil flushing
Preceded by soil
vapor extraction
using the same
horizontal wells | Plastics manufacturing, Other organic chemical manufacturing, Other inorganic chemical manufacturing, Drum storage/ disposal, Municipal water supply | Soil (6,000 cy) | VOCs (TCE, Vinyl chloride, Carbon Tetrachloride, Chloroform, BTX), SVOCs (Dichlorobenzene, Trichlorobenzene) | Being
installed;
Pilot study
underway
Completion of
pilot planned
Summer 1993 | PRP
lead/Federal
oversight;
Conestoga-
Rovers &
Associates
(Design
contractor) | Micheal
Townsend
404-347-7791
Bruce Nicholson
(NC)
919-733-2801 | | 5 | Ninth Avenue Dump, IN
(06/30/89) | Soil flushing of
area within
slurry wall | Industrial
landfill | Soil (64,000 cy),
Groundwater | VOCs (TCE, BTEX) | In design;
Design
completion
planned
Summer 1996; | PRP
lead/Federal
oversight;
Fluor-Daniel | Bernard Schorle
312-886-4746 | | 5 | Rasmussen Dump, MI
(03/28/91) | Soil flushing
(flushing part
of recycle of
treated gw) | Industrial
landfill,
Paint/ink
formation | Soil (quantity
unknown) | VOCs (Vinyl
chloride,
Benzene) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight;
Woodward Clyde
- Prime | Ken Glatz
312-886-1434 | | 6 | Koppers/Texarkana*, TX
(09/23/88)
See also Soil Washing | Soil flushing
with reinjection
of treated water
to 1 ft below
surface | Wood preserving | Soil (19,400 cy) | PAHs
(Benzo(a)pyrene,
Creosote), Metals
(Arsenic) | Predesign; Design activity is on hold while EPA relocates the affected community. | PRP
lead/Federal
oversight; ENSR
(Demolition
contractor) | Ursula Lennox
214-655-6743 | | 6 | South Cavalcade
Street*, TX (09/26/88)
See also Soil
Washing | Soil flushing
with the same
surfactants used
for the soils
treated with
soil washing | Wood preserving | Soil (20,000 cy) | SVOCs, PAHs
(Benzo(a)pyrene,
Benzo(a)
anthracene,
Chrysene) | In design;
Design
completion
planned
Summer 1994 | PRP
lead/Federal
oversight | Glan Celerier
214-655-8523 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 ## In Situ Flushing (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--|---|---|---|---|--| | 7 | Pester Burn Pond, KS
(09/30/92)
See also
Bioremediation (In
Situ) | Soil flushing
followed by in
situ
bioremediation | Refinery operation | Soil (70,000 cy),
Sludge (30,000 cy) | PAHs
(Benzo(a)anthrace
ne, Chrysene) | Predesign | PRP
lead/Federal
oversight | Marvin
Glotzbach (KS)
913-296-2783 | | 7 | Lee Chemical, MO
(03/21/91) | Soil flushing | Solvent recovery
facility | Soil (quantity
unknown) | VOCs (TCE) | Being
installed;
Installation
completion
planned
Summer 1993 | PRP lead/State
oversight;
Clark Well and
Equipment, Inc. | Steven Kinser
913-551-7728
Ron Redden (MO)
314-751-8393 | | 8 | Idaho Pole Company*,
MT (09/28/92)
See also
Bioremediation (Ex
Situ), Bioremediation
(In Situ) | Soil flushing | Wood preserving | Soil (6,500 cy) | SVOCs (PCP), PAHs | Predesign | In negotiation | Jim Harris
406-449-5414 | | 10 | Union Pacific Railroad
Sludge Pit, ID
(09/10/91) | Soil flushing | Railroad
operations,
cleaning and
fueling | Soil (quantity
unknown) | VOCs (PCE,TCE),
PAHs (Petroleum
hydrocarbons),
Metals
(Arsenic,Cadmium) | Predesign; PD
Completion
planned Fall
1993 | PRP
lead/Federal
oversight | Rob Hanson
208-334-5860
Gordon Brown
208-236-6160 | | 10 | United Chrome
Products*, OR
(09/12/86) | Soil flushing | Chrome plating facility | Soil (quantity
unknown) | Metals (Chromium
VI) | Operational;
Operations
began during
Summer 1988 | PRP lead/EPA
oversite.;
CH2MHill &
subcontractors | Al Goodman
503-326-3685 | Table 1-1 Remedial Actions: Site-Specific Information By Innovative Treatment Technology Through FY 1992 ## In Situ Vitrification | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--------------------------|--|---|--|---|---|---------------------------------| | 5 | Ionia City Landfill*,
MI (09/29/89) | In situ
Vitrification | Municipal landfill | Soil (5,000 cy) | VOCs (Methylene
Chloride, TCA,
Styrene, Toluene),
Metals (Lead) | In design;
Design
completion
planned Summer
1994 | PRP
lead/Federal
oversight;
Earth
Technology
Corporation | Michael Gifford
312-886-7257 | | 8 | Rocky Mountain
Arsenal, M-1 Basins
(OU 16), CO (02/26/90) | In situ
Vitrification | Federal Facility
Basin which
received
miscellaneous
wastes | Soil (4,600 cy),
Sludge (5,800 cy) | Biocides, Metals
(Arsenic, Mercury) | In design; Design completion planned 1993; On hold pending reentry of vendors into the market | U.S.Army
(PRP) lead | Connally Mears
303-293-1528 | | 8 | Wasatch Chemical*, UT
(03/29/91)
See also
Bioremediation (Ex
Situ) | In situ
Vitrification | Pesticide manufacturing/use /storage, Other organic chemical manufacturing, Other inorganic chemical manufacturing | Soil (3,600 cy),
Sludge (quantity
unknown), Solids
(quantity
unknown) | SVOCs
(Hexachlorobenzene,
PCP), Biocides,
Dioxins | In design;
Design
completion
planned Summer
1993 | PRP
lead/Federal
oversight;
Geosafe | Bert Garcia
303-293-1526 | Table 1-1 Remedial Actions: Site-Specific Information By Innovative Treatment Technology Through FY 1992 ## Soil Vapor Extraction | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|---------------------------------|---|---|--|---| | 1 | Kellogg-Deering Well
Field, CT (09/29/89) | Soil vapor
extraction | Solvent recovery
facility,
Industrial
Complex, Illegal
dumping of solvent
wastes | Soil (quantity
unknown) | VOCs (TCE, PCE,
DCE, TCA, DCA,
Vinyl chloride,
BTEX) | In design;
Design
completion
planned Fall
1994 | PRP lead/Federal
oversight; GZA
Geoenvironmental | Leslie McVickar
617-573-9689 | | 1 | Groveland Wells*, MA
(09/30/88) | Soil vapor
extraction
(carbon
absorption for
air emissions) | Manufacturing | Soil (19,000 cy) | VOCs (TCE,
Methylene
Chloride, DCE) | Operational | PRP lead/Federal
oversight; Terra
Vac | Bob Leger
617-573-5734 | | 1 | Silresim, MA
(09/19/91) | Soil vapor
extraction | Chemical waste
reclamation | Soil (1,370 cy) | VOCs (TCE, TCA,
Carbon
Tetrachloride,
Chloroform,
Styrene) | In design;
Design
completion
planned Winter
1994 | Federal
lead/Fund
Financed | Leslie McVikar
617-573-9689 | | 1 | Wells G&H OU 1, MA
(09/14/89) | Soil vapor
extraction with
air flushing | Drum storage/
disposal, Leaking
UST and midnight
dumping | Soil (7,400 cy) | VOCs (PCE, TCE) | Operational; OU 1 consists of 5 properties, the technolgy has become operational on some of the properties. | PRP lead/Federal
oversight;
Several
contractors
Working on the
site | Mary Garren
617-573-9613
Paula
Fitzsimmons
617-223-5572 | | 1 | Mottolo Pig Farm, NH
(03/29/91) | Soil vapor
extraction | Uncontrolled waste
site | Soil (3,400 cy) | VOCs (TCE, TCA,
Vinyl chloride,
DCA, DCE, Toluene,
Ethylbenzene) | Being
installed;
Construction
to start
summer 1993 | Federal
Lead/Fund
Financed | Roger Duwart
617-573-9628
Michael
Robinette (NH)
603-271-2014 | | 1 | South Municipal Water
Supply Well*, NH
(09/27/89)
See also Other
Technologies | Soil vapor
extraction; Air
sparging of gw | Ball Bearing
Manufacturing | Soil (7,500 cy),
Groundwater | VOCs (PCE, TCA, TCE) | Being
installed;
Construction
to start
summer 1993 | PRP lead/Federal
oversight | Roger Duwart
617-573-9628
Tom Andrews
(NH)
603-271-2910 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--|------------------|--|---|--|---| | 1 | Tibbetts Road*, NH
(09/29/92)
See also In situ
Flushing | Soil vapor
extraction | Illegal dumping
site, primarily
painting wastes
and solvents. | Soil (50,000 cy) | VOCs (PCE, TCE) | Predesign | In negotiation | Darryl Luce
617-573-5767
Mike Robinette
(NH DES)
603-271-2014 | | 1 | Tinkham Garage*, NH
(09/30/86) | Soil vapor
extraction
(carbon
absorption for
air emissions) | Illegal dumping
site | Soil (9,000 cy) | VOCs (TCE,
Chloroform, DCE,
Vinyl chloride,
Benzene) | In design;
Operation
scheduled to
begin summer
1994 | PRP lead/Federal
oversight;
Terra
Vac | Diana King
617-573-9676 | | 1 | Stamina Mills, RI
(09/28/90) | Soil vapor
extraction | Textile
Manufacturing | Soil (6,000 cy) | VOCs (DCE, TCE) | Predesign; PD
Completion
planned Fall
1993 | PRP lead/Federal
oversight | Neil Handler
617-573-9636
Mark Dennen (RI
DEM)
401-277-2797 | | 2 | A O Polymer, Soil
treatment phase, NJ
(06/28/91) | Soil vapor
extraction
(carbon
adsorption for
air emissions) | Polymer
manufacturing | Soil (7,500 cy) | VOCs (TCE, TCA,
Trichlorofluoromet
hane, Toluene,
Ethylbenzene),
SVOCs
(Naphthalene,
4-methylphenol) | In design;
Design
completion
planned Winter
1993 | PRP lead/Federal
oversight;
Harding-Lawson | Rich Puvogel
212-264-9836 | | 2 | FAA Technical
Center*, NJ
(09/26/89)
See also
Bioremediation (In
Situ) | Soil vapor
extraction | Jet fuel tank farm | Soil (33,000 cy) | VOCs (BTEX), SVOCs
(Chlorophenol,
Phenol) | Design
completed but
not installed;
Design
completed 8/92 | Federal
facility, FAA
lead | Carla Struble
212-264-4595
Keith Buch
(FAA)
609-485-6644 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|---|----------------------------|---|---|---|--| | 2 | Garden State
Cleaners, NJ
(09/26/91) | Soil vapor
extraction | Dry cleaners | Soil (300 cy) | VOCs (PCE) | In design; Design completion planned Summer 1994; The USACE is doing the design for EPA | Federal
lead/Fund
Financed | Sharon Atkinson
212-264-1217 | | 2 | South Jersey
Clothing, NJ
(09/26/91) | Soil vapor
extraction | Dry cleaners,
Clothing
manufacturer | Soil (1,400 cy) | VOCs (TCE) | In design; Design completion planned 1993; The USACE is doing the design for EPA. | Federal
lead/Fund
Financed | Sharon Atkinson
212-264-1217 | | 2 | Swope Oil & Chem Co.,
OU 2, NJ (09/27/91)
See also
Bioremediation (In
Situ) | Soil vapor
extraction
Vacuum
extraction.Biove
nting (Not
planned yet) | Chemical
reclamation | Soil (258,000 cy) | VOCs (TCE, PCE,
Toluene,
Ethylbenzene,
Xylene) | Predesign; PD
Completion
planned 1993 | PRP
lead/Federal
oversight | Joseph Gowers
212-264-5386 | | 2 | Applied Environmental
Services, OU 1, NY
(06/24/91)
See also
Bioremediation (In
Situ), Other
Technologies | Soil vapor
extraction with
air flushing
with air
sparging | Bulk petroleum and
hazardous waste
storage facility | Soil (quantity
unknown) | VOCs (BTEX) | In design;
Design
completion
planned Winter
1993 | PRP lead/State
oversight;
RETECH - Design
Contractor | Andrew English
(NY)
518-457-0315
Jeff Tradd
518-457-1708 | | 2 | Circuitron
Corporation, OU 1, NY
(03/29/91) | Soil vapor
extraction | Electroplating | Soil (900 cy) | VOCs (TCA, PCE,
TCE, DCA) | In design;
Design
completion
planned Fall
1993 | Federal
lead/Fund
Financed; ICF -
Design
Contractor | Miko Fayon
212-264-4706 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description ² | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|---|----------------------------|--|---|--|---| | 2 | Genzale Plating
Company, OU 1, NY
(03/29/91) | Soil vapor
extraction
precedes
excavation for
off-site
solidification | Electroplating | Soil (275 cy) | VOCs (TCE, TCA) | In design;
Design
completion
planned Spring
1994 | Federal
lead/fund
Financed; CDM | Janet Cappelli
212-264-8679 | | 2 | Mattiace
Petrochemicals
Company, OU 1, NY
(06/27/91) | Soil vapor
extraction | Organic chemicals
blending | Soil (17,000 cy) | VOCs (PCE, TCE,,
Benzene, Xylene) | Predesign; PD
Completion
planned Winter
1993 | Federal
lead/Fund
Financed;
ARCR-PD | Edward Als
212-264-0522 | | 2 | Pasley Solvents and
Chemicals, Inc., NY
(04/24/92)
See also In situ
Flushing | Soil vapor
extraction | Tank farm and chemical distribution facility | Soil (13,000 cy) | VOCs (TCE, PCE,
Benzene) | In design | Federal
lead/Fund
Financed; Ebasco
- Design
contractor | Sherrel Henry
212-264-8675 | | 2 | SMS Instruments (Deer
Park), NY (09/29/89) | Soil vapor
extraction with
catalytic
combustor for
vapors | Military aircraft
component
overhauler | Soil (1,250 cy) | VOCs (TCE), SVOCs
(Dichlorobenzene) | Operational;
Completion
planned Summer
1993; Will be
evaluated in
Summer 1993 to
determine if
performance
standards are
achieved | Federal
lead/Fund
Financed; Four
Seasons | Miko Fayon
212-264-4706 | | 2 | Solvent Savers, NY
(09/30/90)
See also Thermal
Desorption | Soil vapor
extraction | Solvent recovery
facility, Chemical
reclamation | Soil (quantity
unknown) | VOCs (DCE, TCE) | Predesign; PD
Completion
planned Winter
1993 | PRP lead/Federal
oversight | Lisa Wong
212-264-9348
212-264-5712 | | 2 | Vestal Water Supply
1-1, NY (09/27/90) | Soil vapor
extraction | Industrial park | Soil (25,000 cy) | VOCS (DCA, TCA,
TCE, DCE) | Predesign; PD
Completion
planned Winter
1993 | Area 2 - Fund
lead; Area 4 -
PRP lead | Ed Als
212-264-0522 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Conteminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|---|---|---|--|---|-------------------------------| | 2 | Upjohn Manufacturing
Co., PR (09/30/88) | Soil vapor
extraction | Industrial
facility, chemical
leak | Soil (quantity
unknown) | VOCs (Carbon
Tetrachloride,
Acetonitrile) | Completed;
Operational
1/83 to 3/88 | PRP lead/Federal
oversight; Terra
Vac | Alison Hess
212-264-6040 | | 3 | Bendix OU 3, PA
(09/30/88) | Soil vapor
extraction with
air flushing | Aircraft
instrumentation
manufacturing | Spil (33,000 cy) | VOCs (PCE, TCE,
Vinyl chloride) | Predesign; PD
Technology on
hold pending
review of
Treatability
Study | PRP lead/Federal
oversight; ERM,
Inc. | Humane Zia
215-597-0913 | | 3 | Cryochem, OU 3, PA
(09/30/91) | Soil vapor
extraction | Machine shops,
Metal fabrication | Soil (70 cy) | VOCS (TCA, TCE,
PCE, DCA, DCE) | Predesign; PD
Completion
planned Fall
1993 | Federal
lead/Fund
Financed; CH2M
Hill | Joe McDowell
215-597-8240 | | 3 | Henderson Road*, PA
(06/30/88) | Soil vapor
extraction with
air flushing
(Treating
unsaturated soil
and bedrock) | Injection well | Soil (74,000 cy) | VOCs (DCA, TCA,
Toluene) | Operational;
Completion
date unknown | PRP lead/Federal
oversight; RT
Environmental
Services. | Joe McDowell
215-597-8240 | | 3 | Lord-Shope Landfill*,
PA (06/29/90) | Soil vapor
extraction
(method to be
determined in
design) | Industrial
landfill | Soil (270,000 cy) | VOCs (PCE, TCE,
Vinyl chloride,
Alcohols,
n-butanol), SVOCs
(Ketones) | In design;
Design
completion
planned Winter
1993 | PRP lead/Federal
oversight;
Eckenfelder | Dave Turner
215-597-3218 | | 3 | Raymark*, PA
(12/30/91) | Soil vapor
extraction | Multi-source metal
fabrication
facility | Soil (quantity
unknown), Solids
(quantity
unknown) | VOCs (TCE, PCE,
1,2-DCE) | Being
installed;
Installation
completion
planned Winter
1993 | Federal
lead/Fund
Financed | Harry Harbold
215-597-1101 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|---
---|--|---|---|---| | 3 | Tyson's Dump*, PA
(03/31/88) | Soil vapor extraction with air flushing (The system has been modified during operations) | Abandoned septic
and chemical waste
disposal site | Soil (30,000 cy) | VOCs (Benzene,
Toluene, Xylene),
SVOCs
(Trichloropropane) | Operational
Completion
date unknown | PRP lead/Federal
oversight; Terra
Vac | Eugene Dennis
215-597-3153 | | 3 | Arrowhead
Associates/Scovill,
OU 1, VA (09/30/91) | Soil vapor
extraction with
air flushing | Electroplating | Soil (1,000 cy) | VOCs (TCE, PCE) | Predesign; PD
Completion
planned Summer
1993 | PRP lead/Federal
oversight; ICF
Kaiser | Ron Davis
215-597-1727 | | 3 | Defense General
Supply Center, OU 5*,
VA (03/25/92) | Soil vapor
extraction | Cleaning and
repainting of
combat helmets and
gas cylinders | Soil (1,000 cy) | VOCs (PCE, TCE) | In design; Design completion planned Summer 1993; 95% of design complete. | Federal Facility
DLA Lead/Federal
oversight;
Engineering-Scie
nce | Jack Potosnak
215-597-2317
Bill Sadington
(DGSC)
804-279-3781 | | 4 | Hollingsworth
Solderless, FL
(04/10/86) | Soil vapor
extraction | Electroplating | Soil (62 cy) | VOCs (TCE, Vinyl
chloride, DCE) | Completed;
Operational
from 1/91 to
7/91 | Federal
lead/Fund
Financed; Ebasco | John Zimmerman
404-347-2643 | | 4 | Robins AFB, Landfill
and Sludge Lagoon, CU
1, GA (06/28/91) | Soil vapor
extraction | Federal facility,
sludge from an
industrial waste
water treatment
plant | Soil (15,000 cy),
Sludge (quantity
unknown) | VOCs (TCE, PCE,
Vinyl chloride,
Carbon
Tetrachloride) | Predesign; PD
Completion
planned Summer
1992; PD
completion
planned Summer
1992 | Federal
Facility, U.S.
Air Force
Lead/Federal
Oves | Roseanne Rudd
404-347-7791 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Kedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|--|---|---|--|--| | 4 | Charles Macon Lagoon,
Lagoon #7, OU 1, NC
(09/30/91) | Soil vapor
extraction with
air flushing | Petroleum refining
and reuse, Drum
storage/disposal,
Waste oil recycler | Soil (1,300 cy),
Sludge (quantity
unknown) | VOCs (PCE) | In design;
Design
completion
planned Summer
1994 | PRP lead/Federal
oversight; RMT | Giezelle
Bennett (EPA)
404-347-7791
Patrick Watters
(NC)
919-733-2801 | | 4 | JADCO-Hughes, NC
(09/27/90)
See also In situ
Flushing | Soil vapor
extraction with
horizontal wells
Followed by in
situ flushing
with same ports | Plastics manufacturing, Other organic chemical manufacturing, Other inorganic chemical manufacturing, Drum storage/ disposal, Municipal water supply | Soil (6,000 cy) | VOCs (Carbon
tetrachloride,
Chloroform, Vinyl
chloride, BTX),
SVOCs
(Dichlorobenzene,
Trichlorobenzene) | In design; Design completion planned Winter 1993; Treatability study being conducted in design | PRP lead/Federal
oversight | Micheal
Townsend
404-347-7791
Bruce Nicholson
(NC)
919-733-2801 | | 4 | Medley Farm, OU 1, SC
(05/29/91) | Soil vapor
extraction | Other organic
chemical
manufacturing,
Rubber
manufacturing,
Drum storage/
disposal | Soil (50,000 cy) | VOCs (DCA, DCE,
TCA, Benzene,
Toluene), SVOCs
(Phthalates) | Predesign;
Design
completion
planned for
Summer 1993 | PRP lead/Federal
oversight
RMI, Inc. | Ralph Howard
404-347-7791
Richard Haynes
(SC)
803-734-5487 | | 4 | SCRDI Bluff Road, SC
(09/12/90) | Soil vapor
extraction with
air flushing | Drum storage/
disposal, Solvent
recovery facility | Soil (45,000 cy) | VOCS (TCA, TCE,
PCA, PCE, DCA,
DCE, MEK,
Chlorobenzene,
BTEX) | Predesign; PD
Completion
planned Fall
1993;
Litigation
from
surrounding
landowners has
delayed
progress. | PRP lead/Federal
oversight ERM,
DeMaximus | Steve Sandler
404-347-7791 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|----------------------------|---|---|--|--------------------------------| | 4 | Carrier Air
Conditioning*, TN
(09/03/92) | Soil vapor
extraction with
air flushing | Manufacturer of
heating and air
conditioning units | Soil (76,500 cy) | VOCs (TCE) | Design
completed but
not installed;
Completion
planned Fall
1993 | PRP lead/Federal
oversight;
Environmental
Safety &
Designs, Inc. | Beth Brown
404-347-7791 | | 5 . | Acme Solvent Reclaiming, Inc. OU 2, IL (12/31/90) See also Thermal Desorption | Soil vapor
extraction with
air flushing | Industrial
landfill,
Municipal water
supply | Soil (quantity
unknown) | VOCs (DCA, TCA,
DCE, TCE, PCE,
Vinyl chloride,
Benzene) | In design;
Design
completion
planned Summer
1994 | PRP lead/Federal
oversight;
Harding/Lawson -
Prime | Deborah Orr
312-886-7576 | | 5 | American Chemical
Services*, IN
(09/30/92)
See also Thermal
Desorption | Soil vapor
extraction with
air flushing
bioenhancement
for SVOCs;air
flushing
w/vertica wells | Other organic
chemical
manufacturing,
Solvent recovery
facility | Soil (100,000 cy) | VOCs | Predesign;
Schedule
pending
completion of
negotiation | In negotiation | Wayde Hartwick
312-886-7067 | | 5 | Enviro. Conservation
and Chemical (ROD
Amendment), IN
(06/07/91) | Soil vapor
extraction with
air flushing | Industrial
landfill,
Municipal water
supply | Soil (quantity
unknown) | VOCs (Toluene,
Ethylbenzene,
Xylene), SVOCs
(Dichlorobenzene,
Phenol), Organics
(BNAs) | In design | PRP lead/Federal
oversight | Karen Vendl
312-886-4739 | | 5 | Fisher Calo Chem, IN
(08/07/90) | Soil vapor
extraction | Municipal water
supply | Soil (29,500 cy) | VOCs (PCE, DCA,
TCA) | In design;
Design
completion
planned Fall
1993 | PRP lead/Federal
oversight;
Connestoga
Rovers - Prime | Jeff Gore
312-886-6552 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|-------------------|---|--|---|-------------------------------| | 5 | MIDCO I, IN
(06/30/89) | Soil vapor
extraction | Industrial
landfill | Soil (10,000 cy) | VOCs (TCE,
Dichloromethane,
Chlorobenzene,
2-Butanone, BTX),
SVOCs (Phenols),
PAHs | Predesign; PD
Completion
planned Winter
1994 | PRP lead/Federal
oversight; ERM
Korthcentral-
prime | Richard Boice
312-886-4740 | | 5 | Main Street Well
Field, IN (03/29/91) | Soil vapor
extraction with
air flushing | Solvent recovery
facility, Water
Supply
Contamination from
many sources | Soil (22,000 cy) | VOCs (TCE) | In design;
East site (60%
design
completion by
June 1, 1993)/
West site (95
% design in
progress) | PRP lead/Federal
oversight | Deborah Orr
312-886-7576 | | 5 | MIDCO II, IN
(06/30/89) | Soil vapor
extraction | Drum
storage/
disposal | Soil (12,200 cy) | VOCs (Methylene
chloride, TCE,
2-Butanone,
Toluene) | Predesign; PD
Completion
planned Winter
1994;
Bench-scale
treatability
study is
underway. | PRP lead/Federal
oversight; ERM
Northwest-prime | Rich Boice
312-886-4740 | | 5 | Seymour Recycling, IN
(09/30/87)
See also
Bioremediation (In
Situ) | Soil vapor
extraction (No
emissions
treatment) | Chemical waste
management and
incineration | Soil (200,000 cy) | VOCs (TCA, Carbon
tetrachloride,
PCE, TCE, Vinyl
chloride, Benzene) | Operational;
Completion
planned Spring
1994 | PRP lead/Federal oversight; Canonie Engineering (installation), Geraghty & Miller (operation) | Jeff Gore
312-886-6552 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|-------------------|---|---|---|---| | 5 | Wayne Waste
Reclamation, IN
(03/30/90) | Soil vapor
extraction with
air flushing | Municipal
landfill, Oil
reclamation | Soil (300,000 cy) | VOCs (TCE, DCE,
Vinyl chloride,
BTEX) | In design; Design completion planned Winter 1993; 30% design approved in March 1993 | PRP lead/Federal
oversight;
Warzyn, Inc. | Beverly Kush
312-886-6945
Duane Heaton
312-886-6399 | | 5 | Chem Central, MI
(09/30/91) | Soil vapor
extraction
(vapor treatment
through carbon) | Chemical packaging and distribution | Soil (6,200 cy) | VOCs (DCE, TCE,
TCA, BTEX), SVOCs
(Naphthalene,
2-methyl
naphthalene) | In design; Design completion planned Summer 1994; Predesign completed in May 1993 | PRP lead/Federal
oversight; WW
Engineering &
Science | Colleen Hart
312-353-8752 | | 5 | Clare Water Supply,
MI (09/16/92) | Soil vapor
extraction with
air flushing air
flushing with
vertical wells | Industrial area
with above/below
ground tanks
multisource
groundwater site | Soil (54,800 cy) | VOCs (TCE, DCE,
Vinyl chloride,
BTEX) | Predesign;
Schedule
pending
negotiation
completion | In negotiation;
Dames & Moore -
Prime | Jon Peterson
312-353-1264 | | 5 | Electro-Voice, OU 1,
MI (06/23/92) | Soil vapor
extraction | Audio equipment
manufacturer | Soil (2,100 cy) | VOCs (TCE, PCE,
Vinyl chloride),
PAHs | Predesign; PD
Completion
planned Winter
1993 | PRP lead/Federal
oversight;
Geraghty &
Miller | Beth Reiner
312-886-4783 | | 5 | Kysor Industrial*, MI
(09/29/89) | Soil vapor
extraction | Machine shops,
Truck parts
manufacturing | Soil (13,200 cy) | VOCs (TCE, Xylene,
Toluene,
Ethylbenzene) | In design;
Design
completion
planned Summer
1993 | PRP lead/Federal
oversight | Mary L.
Gustafson
312-886-6144
Julie
Zacutansky
312-353-9660 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Hame, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|------------------------------|----------------------------|--|---|---|---| | 5 | Peerless Plating, MI
(09/21/92) | Soil vapor
extraction with
horizontal wells | Electroplating | Soil (6,500 cy) | VOCs (1,2-DCE,
TCE, Benzene,
Ethylbenzene) | Predesign; PD
Completion
planned Fall
1993 | Federal
lead/Fund
Financed; PRC
Environmental
Management, Inc. | Tom Pay
312-886-5991 | | 5 | Springfield Township
Dump, MI (09/29/90) | Soil vapor
extraction | Industrial
landfill | Soil (100,000 cy) | VOCs (TCE, TCA,
Chlorobenzene,
Toluene) | Predesign; PD
Completion
planned Fall
1992; 60 %
design on
ground water,
60 % design on
soil vapor
extraction | PRP lead/Federal
oversight | Mary Lou Martin
312-353-7446 | | 5 | Sturgis Municipal
Well Field, MI
(09/30/91) | Soil vapor
extraction with
air flushing | Solvent recovery
facility | Soil (quantity
unknown) | VOCs (TCE; PCE,
TCA) | Predesign; PD
Completion
planned 1993 | Federal
lead/Fund
Financed | Terese Van
Donsel
312-353-6564
Steve Padovani [,]
312-353-6755 | | 5 | ThermoChem, Inc. OU
1, MI (09/30/91) | Soil vapor
extraction with
air flushing;
May include
biological
enhancement | Municipal water
supply | Soil (50,000 cy) | VOCs (PCE, TCE,
Ethylbenzene,
Xylene) | Predesign; PD
Completion
planned Winter
1993; A
schedule is
being
negotiated
with PRPs. | Federal
lead/Fund
Financed | Jim Hahnenberg
312-353-4213 | | 5 | Verona Well Field
(Thomas
Solvent/Raymond
Road)*, MI (08/12/85) | Soil vapor
extraction
(attempted
Nitrogen
sparging during
part of
operation) | Municipal water
supply | Soil (35,000 cy) | VOCs (Dichloromethane, Chloroform, Carbon tetrachloride, BTEX, Vinyl chloride), SVOCs (Napthalene) | Completed;
Spring 1992 | Federal
lead/Fund
Financed; Terra
Vac
(subcontractor
to CH2M Hill) | Margaret
Guerriero
312-886-0399
Bill Haubal
(temporary
contact) | | Region | Site Name, State,
(RÓD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|---|--|--|--|---| | 5 | Verona Well Field, OU
2, MI (06/28/91) | Soil vapor
extraction
Augmentation
with air
flushing is
being considered | Machine shops,
Municipal water
supply | Soil (30,000 cy) | VOCs (PCE, TCA,
Toluene) | Operational; PRP conducting air sparging pilot study for treating saturated soils. Study to start 9/93 | PRP lead/federal
oversight;
Geraghty &
Miller (Prime),
Maumee Bay
(Remedial
subcontractor) | Margaret
Guierro
312-886-0399 | | 5 | Long Prairie
Groundwater
Contamination, MN
(06/27/88) | Soil vapor
extraction with
air flushing
followed by GAC
for off-gas | Dry cleaners | Soil (3,600 cy) | VOCs (DCE, PCE,
TCE, Vinyl
chloride) | Design
completed but
not installed;
Completion
planned Spring
1994 | State lead/Fund
Financed | Jan Bartlett
312-886-5438
Maureen Johnson
(MN)
612-296-7353 | | 5 | Miami County
Incinerator, OH
(06/30/89) | Soil vapor
extraction with
air flushing
Treatment of
off-gas
determined in
design | Municipal
landfill, Surface
impoundment | Soil (98,000 cy),
Solids (quantity
unknown) | VOCs (TCE, PCE,
Toluene) | In design; Design completion planned Spring 1995; Design started in April 1993. | PRP lead/Federal
oversight;
Connestogo
Roveis-Prime | Anthony Rutter
312-886-8961 | | 5 | Pristine (ROD
Amendment)*, OH
(03/30/90) | Soil vapor
extraction with
horizontal wells | Industrial
landfill, Drum
storage/disposal | Soil (19,400 cy) | VOCs (Chloroform,
DCA, PCE, TCE,
Benzene), SVOCs
(Phenol) | In design;
Design
completion
planned Spring
1994; Pilot
study
completed | PRP lead/Federal
oversight;
Hydrogeo-Chem | Thomas Alcamo
312-886-7278 | | -5 | Zanesville Well
Field, OH (09/30/91)
See also Soil Washing | Soil vapor extraction with horizontal wells followed by excavation and soil washing for metals | Solvent recovery
facility, Auto
parts
manufacturing | Soil (36,000 cy) | VOCs (TCE, DCE) | Predesign; PD
Completion
planned Fall
1993 | PRP lead/Federal
oversight;
Geraghty &
Miller - Prime | Dave Wilson
312-886-1476 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Hame, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------
---|---|---|----------------------------|--|--|---|---| | 5 | City Disposal
Corporation Landfill,
WI (09/28/92) | Soil vapor
extraction | Industrial
landfill,
Municipal landfill | Soil (quantity
unknown) | VOCs
(Tetrahydrofuran) | Predesign; PD
Completion
planned Spring
1994 | PRP lead/Federal
oversight; Rust
Environmental -
Prime | Russ Hart
312-886-4841
Mike Schmoller
(WDNR)
608-275-3303 | | 5 | Hagen Farm, WI
(09/17/90) | Soil vapor
extraction with
air flushing | Industrial and
Municipal Waste
Disposal | Soil (67,650 cy) | VOCs (Vinyl
chloride,
2-Butanone, BTEX),
Dioxins
(Tetrahydrofuran) | In design;
Design
completion
planned Summer
1993; Pilot
test completed
Fall 1992 | PRP lead/Federal
oversight;
Warzyn-Prime | Steve Padovani
312-353-6755
Don DiGulim
(RSKERL)
405-332-8800 | | 5 | Muskego Sanitary
Landfill, Interim
Action OU 1, WI
(06/12/92) | Soil vapor
extraction | Industrial
landfill,
Municipal landfill | Soil (24,200 cy) | VOCs (Vinyl
chloride, 1,2-DCA,
Methylene
chloride, BTEX) | In design; Design completion planned Summer 1993; Operation scheduled to start in Summer 1993 | PRP lead/Federal
oversight; Rust
- Design | Bill Haubold
312-353-6261 | | 5 | Wausau Groundwater
Contamination, WI
(09/29/89) | Soil vapor
extraction with
air flushing
Soil vapor
extraction | Machine shops,
Bulk chemical
distribution | Soil (1,300 cy) | VOCs (TCE, DCE,
PCE) | Design completed but not installed; Installation to take place between June and September 1993 | PRP lead/Federal
oversight;
Hydrogeo-Chem
(sub to
Conestoga-Rovers
& Associates) | Margaret
Guerriero
312-886-0399 | | 6 | Prewitt Abandoned Refinery, NM (09/30/92) See also Bioremediation (Ex Situ), Other Technologies | Soil vapor
extraction With
Air Sparging | Crude oil refinery | Soil (quantity
unknown) | Organics (NAPLs) | Predesign | PRP lead/Federal
oversight | Monica
Chapa-Smith
214-655-6780 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|---|----------------------------|-------------------------------------|---|--|---| | 6 | South Valley*, NM
(09/30/88) | Soil vapor
extraction | Aircraft Engine
Manufacturing. | Soil (quantity
unknown) | VOCs (PCE, TCE,
DCE, TCA) | Design completed but not installed; Completion planned Winter 1993; Installed Jan./March 1993 for north/south end. Pilot tests completed Nov. 1992. | PRP lead/Federal
oversight;
Canonie
Environmental
Services | Bert Gorrod
214-655-6779 | | 6 | Tinker AFB (Soldier
Creek Bldg. 3001), OK
(08/16/90) | Soil vapor
extraction | Maintenance
Facility for
Aircraft | Soil (quantity
unknown) | VOCs (BTEX) | In design; Data on viability of SVE for the heavy fuel oil contamination being re-evaluated. Decision in Fall 1993 | Air Force
lead/Federal
Oversight | Susan Webster
214-655-6784
Major Richard
Ashworth (USAF)
405-734-3058 | | 6 | Petro-Chemical
Systems, Inc., OU 2,
TX (09/06/91)
See also Other
Technologies | Soil vapor
extraction with
air flushing and
air sparging of
ground water | Petroleum refining
and reuse | Soil (300,000 cy) | VOCs (BTEX), SVOCs
(Naphthalene) | Predesign | Federal
lead/Fund
Financed | Chris Villareal
214-655-6758 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--------------------------|--|----------------------------|--|---|---|---| | 7 | Coleman Operable Unit
29th and Mead, KS
(09/29/92) | Soil vapor
extraction | Formerly vehicle
manufacturing,
currently heating,
air conditioning
equipment
manufacturing | Soil (2,000,000
cy) | VOCs (TCE,
1,1,1-TCA, DCE,
Vinyl chloride,
Toluene) | Predesign; PD
Completion
planned Fall
1993; Soil
vapor system
already in
place. ROD
calls for
expansion of
the system | PRP lead/Federal
oversight;
Groundwater
Technologies,
Inc. | Ken Rapplean
913-551-7769 | | 7 | Hastings GW
Contamination
(Colorado Ave)*, NE
(09/28/88) | Soil vapor
extraction | Industrial Metal
Finishing/Cleaning | Soil (42,700 cy) | VOCs (PCE, TCE,
DCE, TCA) | In design;
Design
completion
planned Fall
1993 | PRP lead/Federal
oversight; ENSR
- Design
Contractor | Darrel
Sommerhauser
913-551-7711
Richard
Schlenker (NE)
402-471-3388 | | 7 | Hastings GW
Contamination
(Far-Mar Co.)*, NE
(09/30/88) | Soil vapor
extraction | Former Grain
Storage Area
(Fumigants) | Soil (quantity
unknown) | VOCs (Carbon
tetrachloride,
Ethylene
dibromide) | In design;
Design
completion
planned Summer
1993 | PRP lead/Federal
oversight; Burns
& McDonald | Susan Hoff
913-551-7786 | | 7 | Hastings GW
Contamination, Well
No. 3*, NE (09/26/89) | Soil vapor
extraction | Former Grain
Storage Area
(Fumigants) | Soil (quantity
unknown) | VOCs (Carbon
tetrachloride,
Chloroform) | Operational;
Completion
planned Fall
1993; SVE
began
operation on
June 1, 1992.
The State will
take over the
project in
FAll 1993 if
needed. | Federal
lead/Fund
Financed;
Morrison
Knudsen, EPA
contractor | Diane Easley
913-551-7797
Steve Roe
(Morrison
Knudsen)
303-793-5054
Richard
Schlenker (NE)
402-471-3388 | | | | 7 | | T : | | ,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | · · | | |--------|---|---|--|----------------------------|---|---|--|---| | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | | 7 | Lindsay
Manufacturing, NE
(09/28/90) | Soil vapor
extraction with
air | Electroplating,
Galvanized pipes
for irrigation
systems | Soil (quantity
unknown) | VOCs (DCA, DCE,
TCE, PCE) | In design;
Design
completion
planned Fall
1993 | PRP lead/Federal
oversight; Dames
& Moore | Cecelia Tapla
913-551-7733 | | 7 | Waverly Groundwater
Contamination, NE
(09/26/90) | Soil vapor
extraction | Grain Storage
(Fumigants) | Soil (160,000 cy) | VOCs (Carbon
tetrachloride,
Chloroform) | Operational;
Completion
planned 2001;
This project
began in
February,
1988. | PRP lead/Federal
oversight | Jeff
Weatherford
913-551-7695
Mary Hansen
(Argonne
National Lab)
708-252-4938 | | 8 | Chemical Sales
Company, OU 1*, CO
(06/27/91) | Soil vapor
extraction with
air flushing
will recirculate
treated
emissions | Chemical sales and
distribution,
spillage at tank
farm | Soil (360,000 cy) | VOCs (PCE, TCE) | In design;
Design
completion
planned Winter
1993 | PRP lead/Federal
oversight; ENSR | Jim Berkley
303-293-1817 | | 8 | Martin Marietta
(Denver Aerospace),
CO (09/24/90)
See also Thermal
Desorption | Soil vapor
extraction | Aerospace
Equipment
Manufacturer -
Bulk storage
facility and
industrial
landfill | Soil
(quantity
unknown) | VOCs (TCE) | In design;
Design
completion
planned Fall
1993 | PRP/State
oversite under
RCRA; Geraghty &
Miller | George Dancik
303-293-1506
Susan Chaki
303-331-4832 | | 8 | Rocky Flats OU 2,
Interim Remedial
Action Plan, CO
(08/10/92) | Soil vapor
extraction | Former nuclear weapons research and development, production, and plutonium reprocessing complex | Soil (quantity
unknown) | VOCs (TCE, PCE,
Carbon
tetrachloride) | Predesign;
Pilot-scale is
scheduled to
start
operation in
December 1993 | DOE Lead/Federal
Oversight DOE
ERP; Woodward
Clyde, Roy
Weston, Layne
Environmental | Bill Frazier
303-294-1081
Scott Grace
(Rocky Flats)
303-966-7199 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Hame, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|---|--|--|--|---|---| | 8 | Rocky Mountain
Arsenal OU 18,
interim response, CO
(02/26/90) | Soil vapor
extraction | Motor Pool Area | Soil (100 ft
radius down to 60
ft deep;
approximately
70,000 cy) | VOCs (TCE) | Completed;
March 1992 | U. S. Army (PRP)
lead; Roy
Weston, Ebasco,
Harding Lawson,
Woodward Clyde | Stacey Eriksen
303-294-1083 | | 8 | Sand Creek Industrial
OU 1*, CO (09/29/89) | Soil vapor
extraction | Pesticide
manufacturing/use
/storage, Refinery | Soil (38,000 cy) | VOCs (TCE, PCE,
Methylene
chloride,
Chloroform) | Operational;
Completion
planned Fall
1994 | Federal
lead/Fund
Financed; OHM | Erna Acheson
303-294-1971 | | 9 | Hassayampa Landfill,
AZ (08/15/92) | Soil vapor
extraction | Municipal Landfill | Soil (quantity
unknown) | VOCs (1,1-DCE,
1,1,1-TCA,
1,2-DCE, 1,1-DCA,
TCE) | In design;
Pilot-scale
system is in
operation | PRP lead/Federal
oversight;
Conestoga Rovers | Tom Dunkleman
415-744-2395 | | 9 | Indian Bend Wash,
South Area, OU 1, AZ
(09/12/91) | Soil vapor
extraction May
vary technology
at different
units | Dry cleaners,
Electroplating,
Industrial
landfill,
Municipal landfill | Soil (quantity
unknown) | VOCs (PCE, TCE,
TCA) | Predesign; Pilot project under the SACM initiative, schedules for different units may vary. | PRP lead/Federal
oversight; mixed
funding | Jeff Dhont
415-744-2363 | | 9 | Mesa Area Groundwater
Contamination, AZ
(09/27/91) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (quantity
unknown) | VOCs (TCE, PCE,
1,1-DCE) | Operational | PRP lead/State
oversight | Richard Oln
(AZ)
602-207-4176 | | 9 | Motorola 52nd Street,
AZ (09/30/88) | Soil vapor
extraction | Manufacturing
Facility | Soil (quantity
unknown) | VOCs (TCA, TCE,
DCE, PCE, Carbon
tetrachloride,
Ethylbenzene) | Predesign; A pilot system is operational but the full scale technology is still being evaluated. | PRP lead/State
oversight; Dames
and Moore | Mike Montgomery
415-744-2394
Jeff Kulon (AZ)
602-207-4181
Hotline
602-207-4360 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | | | | | | | * * * * * * * * * * * * * * * * * * * | 4 | S. Burgha Jay | |--------|---|---|--|----------------------------|---|--|---|--| | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | | 9 | Phoenix-Goodyear
Airport Area (North &
South Fac), AZ
(09/26/89) | Soil vapor
extraction | Defense related
manufacturing | Soil (271,200 cy) | VOCs (DCE, TCE,
MEK, Acetone) | Operational | PRP lead/Federal
oversight;
Metcalf & Eddy -
South Area,
Malcome Pirnie -
North Area | Craig Cooper
415-744-2370 | | 9 | Fairchild
Semiconductor (San
Jose)*, CA (03/20/89) | Soil vapor
extraction with
air flushing | Semiconductor
manufacturing | Soil (1,933,488
cy) | VOCs (TCA,
1,1-DCE, Freon) | Completed;
Fall 1990;
Remedial
efforts will
be reevaluated
in January
1994 | PRP lead/State
oversight;
Canonie
Engineering | Helen McKinley
510-744-2236
Steve Hill (CA)
510-286-0433 | | 9 | Fairchild
Semiconductor/MTV-I*,
CA (06/09/89) | Soil vapor
extraction | Semiconductor
manufacture and
metal finisher | Soil (quantity
unknown) | VOCs (TCE, PCE,
Vinyl chloride,
DCA, DCE, Freon),
SVOCs (Phenol) | In design;
Design
completion
planned 1993 | PRP lead/Federal
oversight | Kelly McCarthy
415-744-2236 | | 9 . | Fairchild
Semiconductor/MTV-II*
, CA (06/30/89) | Soil vapor
extraction | Semiconductor
manufacturing,
Metal Finishing
Facility | Soil (50,000 cy) | VOCs (TCE, PCE,
Vinyl chloride,
DCA, DCE, Freon),
SVOCs (Phenol) | In design;
Design
completion
planned 1993 | PRP lead/Federal
oversight;
Canonie
Engineering | Kelly McCarthy
415-744-2236 | | 9 | IBM (San Jose)*, CA
(12/15/88) | Soil vapor
extraction | Computer
Manufacture | Soil (24,000 cy) | VOCs (TCA,
Acetone, Freon,
Isopropyl Alcohol,
Xylenes) | Operational;
Completion
planned Spring
2001 | PRP lead/State
oversight; Terra
Vac | Helen McKinley
415-744-2236
Steve Morris
(CA)
510-286-0304 | | 9 | Intel, Mountain
View*, CA (06/09/89) | Soil vapor-
extraction | Semiconductor
manufacturing,
Metal Refinishing
Facility Aircraft
Maintenance | Soil (3,000 cy) | VOCs (TCE, PCE,
Vinyl chloride,
DCA, DCE, Freon),
SVOCs (Phenol) | In design;
Design
completion
planned 1993 | PRP lead/Federal
oversight; Weiss
Associates | Kelly McCarthy
415-744-2236 | | Region | Site Hame, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--------------------------|---|----------------------------|---|--|---|---| | 9 | Intersil/Siemens, CA
(09/27/90) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (quantity
unknown) | VOCs (TCE,
1,1,1-TCA, Xylene) | Operational | State lead/Fund
Financed;
Levine-Fricke | Marie Lacey
415-744-2234
Steve Morse
(CA)
510-286-0304
Steve Hill (CA)
510-286-0433 | | 9 | Lawrence Livermore
National Laboratory,
CA (07/15/92) | Soil vapor
extraction | Research and
Development
facility | Soil (quantity
unknown) | VOCs (Fuel
hydrocarbons) | Predesign | DOE lead/Federal
oversight | Mike Gill
415-744-2383 | | 9 | Monolithic
Memories/AMD -
Arques, Subunit 2, CA
(09/11/91) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (3,400 cy) | VOCs (PCE, TCE,
TCA), PAHS | Operational;
Started
operation in
Spring 1993 | State lead/Fund
Financed;
Pacific
Environmental
Group | Cecil Felix
(CA)
510-464-1249 | | 9 | National
Semiconductor
(Monolithic
Memories), CA
(09/11/91) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (quantity
unknown) | VOCs (PCE, DCE,
Toluene,
Ethylbenzene,
Xylene), SVOCs | Operational;
Completion
planned Spring
1996 | State lead/Fund
Financed;
Harding Lawson &
Associates | Cecil Felix
(CA)
510-286-1249 | | 9 | Pacific Coast
Pipeline, CA
(03/31/92) | Soil vapor
extraction | Petroleum refining
and reuse;
petroleum pumping
station | Soil (quantity
unknown) | VOCs (Methlyene
chloride, DCA,
Benzene, Toluene,
Ethylbenzene) | In design | PRP lead/Federal
oversight | Mike Montgomery
415-744-2403 | | 9 | Purity Oil Sales OU
2, CA (09/30/92) | Soil vapor
extraction | Petroleum refining
and reuse | Soil (64,000 cy) | VOCs (TCE, PCE,
Chlorobenzene,
BTEX) | Predesign | Federal
lead/Fund
Financed | Martin
Kausladen
415-744-2246 | | 9 | Raytheon, Mountain
View*, CA (06/09/89) |
Soil vapor
extraction | Semiconductor
manufacturing,
Metal Refinishing
and Aircraft
Maintenance | Soil (15,000 cy) | VOCs (TCE, PCE,
Vinyl chloride,
DCA, DCE, Freon),
SVOCs (Phenol) | In design;
Design
completion
planned 1993 | PRP lead/Federal
oversight;
Golder &
Associates | Kelly McCarthy
415-744-2236 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|----------------------------|--|---|--|---| | 9 | Sacramento Army
Depot, Tank 2 OU, CA
(12/09/91) | Soil vapor
extraction with
air flushing | Solvent storage
tank at an Army
Depot | Soil (150 cy) | VOCs (PCE,
Ethylbenzene and
Total Xylenes) | Completed;
Operational
from 11/91 to
4/93 | Army (USACE)/DoD
Financed - IRP
Program; Terra
Vac | Marlin Mezquita
415-744-2393
George Siller
(USACE,
Sacramento)
916-557-7418
Dan Oburn
(Sacramento
Army Depot)
916-388-4344 | | 9 | Signetics (AMD 901),
TRW OU, CA (09/11/91) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (8,000 cy) | VOCs (TCE, DCE,
DCA) | Being
installed;
Installation
completion
planned Summer
1993;
Operational by
end of Summer
1993 | PRP lead/State
oversight; Weiss
& Associates | Joe Healy
415-744-2231
Kevin Graves
(CA)
510-286-0435 | | 9 | Signetics (Advanced
Micro Devices 901),
CA (09/11/91) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (32,000 cy) | VOCS (TCE, DCE,
DCA, TCA) | Operational, Although the ROD was signed in FY 91, the PRP has operated the remedy for several years | PRP lead/State
oversight; M-Con
Associates,
Engineering-
Science | Joe Healy
415-744-2231
Kevin Graves
(CA)
510-286-0435 | | 9. | Solvent Service, CA
(09/27/90) | Soil vapor
extraction with
heat enhancement | Municipal water
supply | Soil (quantity
unknown) | VOCs (TCA,
Acetone,
Ethylbenzene,
Xylene), SVOCs
(Dichlorobenzene) | Operational | In negotiation;
David Keith Todd
Engineers | Marie Lacey
415-744-2234
Steve Morse
(CA)
510-286-0304
Kevin Graves
(CA)
510-286-0435 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|----------------------------|---|--|--|--| | 9 | Spectra Physics, OU
1, CA (03/22/91) | Soil vapor
extraction with
horizontal wells | Semiconductor
manufacturing,
Laser
manufacturing | Soil (7,200 cy) | VOCs (TCE) | Operational;
Completion
planned Winter
1997 | PRP lead/State
oversight;
Levine - Fricke | Sean Hogan
415-744-2233
Steve Hill (CA)
510-286-4833 | | 9 | Teledyne
Semiconductors, CA
(03/22/91) | Soil vapor
extraction with
horizontal wells | Semiconductor
manufacturing | Soil (quantity
unknown) | VOCs (TCE) | Operational;
Completion
planned Winter
1997 | PRP lead/State
oversight;
Levine Fricke | Sean Hogan
415-744-2233
Carla Dube
510-286-1041 | | 9 | Van Waters and
Rogers, CA (09/30/91) | Soil vapor
extraction | Chemical packaging
facility | Soil (quantity
unknown) | VOCs (PCE, TCE,
TCA) | Operational | PRP lead/State
oversight; Van
Waters and
Rogers | Marie Lacey
415-744-2234
Susan Gladstone
(CA)
510-286-0840 | | 9 | Watkins-Johnson*, CA
(06/29/90) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (quantity
unknown) | VOCs (DCE, TCA,
TCE) | In design;
Design
completion
planned Summer
1993 | PRP lead/Federal
oversight;
Watkins | Kay Lawrence
415-744-2289 | | 10 | Eielson Air Force
Base*, AK (09/29/92)
See also
Bioremediation (In
Situ) | Soil vapor
extraction | Tactical air
support
installation | Soil (quantity
unknown) | Floating Petroleum
Products (VOCs,
SVOCs, and
Petroleum
Hydrocarbons),
BTEX, TPH-JP-4,
Diesel | In design;
Design
completion
planned Summer
1993 | Federal Facility
Lead/Funded DERA
EA Engineering | Mary Jane
Nearman
206-553-6642
Capt. Max Gandy
907-377-4361
Rielle Markey
907-451-2117 | | 10 | Commencement Bay/S.
Tacoma Channel/Well
12A*, WA (05/03/85) | Soil vapor
extraction with
air flushing | Municipal water supply, Waste oil and solvent reclamation; paint and lacquer thinner manufacturing | Soil (100,000 cy) | VOCs (PCE, TCE, TCA) | Operational;
Completion
planned Fall
1998 | Federal
lead/Fund
Financed; AWD
Technologies,
Inc. | Kevin Rochlin
206-553-2106 | ### Soil Washing | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--|--|---|--|---|--| | 2 | Ewan Property*, NJ
(09/29/89)
See also Solvent
Extraction | Using water only
preceded by
solvent
extraction | Industrial waste
dumping | Soil (22,000 cy) | Metals (Chromium,
Lead, Copper,
Barium) | Predesign; PD
Completion
planned 1995;
Start date
contingent
upon progress
in OU 1.
Completion
planned 1995. | In negotiation | Dave Rosoff
212-264-5397 | | 2 | King of Prussia, NJ
(09/28/90) | Using water with washing agents as an additive residual sludges to be land disposed | Waste processing
facility | Soil (20,000 cy),
Sludge (quantity
unknown),
Sediments
(quantity
unknown) | Metals (Chromium,
Copper, Nickel),
DDT/DDD/DDE,
Hexachloro-
benzene,
Dioxin (2,3,7,8),
TCDD | Design
completed but
not installed;
Completion
planned Summer
1993 | PRP
lead/Federal
oversight;
Alternative
Remedial
Technologies,
Inc. | Gary
Adamkiewicz
212-264-7592 | | 2 | Myers Property, NJ
(09/28/90)
See also
Dechlorination | Soil washing
coupled with
dechlorination | Pesticide
manufacturing/use
/storage | Soil (49,000 cy),
Sediments (1,000
cy) | Metals (Cadmium,
Lead, Arsenic,
Copper) | In design; Design completion planned Winter 1994; Treatability studies underway | PRP
lead/Federal
oversight;
Metcalf & Eddy | John Prince
212-264-1213 | | 2 | Vineland Chemical, OU
1 and OU 2, NJ
(09/29/89)
See also In situ
Flushing | Soil Washing | Pesticide
manufacturing/use
/storage | Soil (62,000 cy) | Metals (Arsenic) | In design;
Design
completion
planned 1993 | Federal
lead/Fund
Financed EBASCO
Design | Matthew
Westgate
212-264-3406
Steve Hadel
(USACE - Kansas
City)
816-426-5221 | | 2 | GE Wiring Devices, PR
(09/30/88) | Using water with
Potassium Iodide
KI2 solution as
an additive | Wiring services
facility | Soil (5,500 cy),
Sludge (quantity
unknown) | Metals (Mercury) | In design;
Design
completion
planned Spring
1994 | PRP
lead/Federal
oversight | Caroline Kwam
212-264-0151 | ## Soil Washing (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Conteminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|---|--
---|--|--|-------------------------------| | 4 | Cabot Carbon/Koppers,
FL (09/27/90)
See also
Bioremediation (Ex
Situ), Bioremediation
(In Situ) | Soil washing
Followed by
bioremediation
of fines | Wood preserving,
Pine tar and
turpentine
manufacturing | Soil (6,400 cy) | SVOCs (PCP),
PAHs, Metals
(Arsenic,
Chromium) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight
McLaren-Hart
Design
Contractor | Martha Berry
404-347-2643 | | 4 | Whitehouse Waste Oil
Pits (ROD Amendment
)*, FL (06/16/92)
See also
Bioremediation (Ex
Situ) | Soil Washing | Waste oil recycler | Soil (quantity
unknown), Sludge
(56,930 cy) | VOCs, PCBs,
PAHs,BTEX | In design;
Design
completion
planned Winter
1993 | Federal
lead/Fund
Financed | Tony Best
404-347-2643 | | 4 | Benfield Industries,
NC (07/31/92)
See also
Bioremediation (Ex
Situ), Bioremediation
(In Situ) | Soil Washing | Bulk chemical
mixing and
repackaging plant. | Soil (4,300 cy) | VOCs, SVOCs,
Inorganics | Predesign | Federal
lead/Fund
Financed;
CDM/F.I.P.
Corporation | John Bornholm
404-347-7791 | | 4 | Cape Fear Wood
Preserving, NC
(06/30/89)
See also
Bioremediation (Ex
Situ) | Using water with sodium hydroxide or hydrochloric acid as an additive may be followed by s/s | Wood preserving | Soil (24,000 cy) | VOCs (Benzene),
PAHs (Creosote),
Metals (Copper,
Chromium,
Arsenic) | Design completed but not installed; Project on hold due to a capacity assurance issue. | Federal
lead/Fund
Financed | Jon Bornholm
404-347-7791 | | 5 | United Scrap Lead/SIA,
OH (09/30/88) | Soil Washing | Battery recycling
/disposal | Soil (109,000
cy), Solids
(55,000 cy),
Sediments
(quantity
unknown) | Metals (Lead) | In design;
Design
completion
planned Spring
1994 | Federal
lead/Fund
Financed | Anita Boseman
312-886-6941 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 ### Soil Washing (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|--------------------------------------|---|---|---|--------------------------------| | 5 | Zanesville Well Field,
OH (09/30/91)
See also Soil Vapor
Extraction | Soil washing ex
situ preceded by
soil vapor
extraction | Solvent recovery
facility, Auto
parts
manufacturing | Soil (1,800 cy) | Metals (Lead,
Mercury) | Predesign; PD
Completion
planned Fall
1993 | PRP
lead/Federal
oversight;
Geraghty &
Miller - Prime | Dave Wilson
312-886-1476 | | 5 | Moss-American*, WI
(09/27/90)
See also
Bioremediation (Ex
Situ) | Soil washing
followed by
slurry phase
bioremediation
of fines | Wood preserving | Soil (80,000 cy) | PAHs | Predesign; PD
Completion
planned 1994;
Bench-scale
study is
underway. | PRP
lead/Federal
oversight;
Weston,
Inc.(prime)/Ber
gmann USA
(subcontractor) | Bonnie Eleder
312-886-4885 | | 6 | Arkwood, AR (09/28/90) | Soil washing
(incineration of
residuals) | Wood preserving | Soil (20,400 cy),
Sludge (425 cy) | SVOCs (PCP),
Dioxins, PAHs | In design;
Design
completion
planned Fall
1995 | PRP
lead/Federal
oversight; ERM
Southwest | Cynthia Kaleri
214-655-6772 | | 6 | Koppers/Texarkana*, TX
(09/23/88)
See also In situ
Flushing | Using water with
a surfactant as
an additive | Wood preserving | Soil (19,400 cy) | PAHs
(Benzo(a)pyrene,
Creosote),
Organics (NAPLs),
Metals (Arsenic) | Predesign; Soil washing project is on hold while EPA relocates community affected by the site | PRP
lead/Federal
oversight; ENSR
(Demolition
contractor) | Ursula Lennox
214-655-6743 | | 6 | South Cavalcade
Street*, TX (09/26/88)
See also In situ
Flushing | Using water with surfactants as an additive (followed by incineration of contaminated residual | Wood preserving | Soil (11,000 cy) | PAHs
(Benzo(a)pyrene,
Benzo(a)anthracen
e, Chrysene) | In design;
Design
completion
planned Summer
1994 | PRP
lead/Federal
oversight | Glenn Celerier
214-655-8523 | ### Soil Washing (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|--|---|---|---|--| | 9 | FMC (Fresno)*, CA
(06/28/91) | Soil washing
followed by s/s | Pesticide
manufacturing/use
/storage | Soil (30,000 cy) | Biocides (DDT,
EDB, Toxaphene,
Chlordane) | Predesign;
Completion of
bench test
scheduled for
December 1993 | PRP lead/State
oversight;
Canonie
Engineering | Tom Dunkelman
415-744-2395
Mike Pfister
(FMC)
209-297-3934 | | 9 | Koppers Company, Inc.
(Oroville Plant), CA
(04/04/90)
See also
Bioremediation (In
Situ) | Soil washing
Method un
determined;
fixation for
metal, 19000 cy | Wood preserving | Soil (200,000 cy) | SVOCs
(Polychlorinated
phenols), Dioxins | In design;
Design
completion
planned Summer
1993 | PRP
lead/Federal
oversight;
Dames & Moore | Fred Schauffler
415-744-2365 | | 9 | Sacramento Army Depot,
Oxidation Lagoons OU,
CA (09/30/92) | Soil Washing | Evaporation ponds
for metal plating
wastewater | Soil (15,000 cy) | Metals (Arsenic,
Cadmium, Lead) | In design; 100% design completion planned for 6/93. Full-scale operation scheduled to start in September 1993 | Army
(USACE)/DoD
Financed - IRP
Program; US PCI | Marlin Mezquita
415-744-2393
George Siller
(USACE)
916-557-7418
Dan Oburn
(Sacramento
Army Depot)
916-388-4344 | | 10 | Gould Battery, OR
(03/31/88) | Soil washing
Solids will be
s/s | Battery recycling
/disposal | Soil (11,000 cy),
Solids (90,000
cy) | Metals (Lead) | Operational;
Completion
planned Summer
1995;
Scheduled to
be in
operation from
fall 1993 to
1995. | PRP
lead/Federal
oversight;
Canonie
Environmental | Jerry Balcom
(Portland
USACE)
503-326-4192
Chip Humphries
(Oregon
operations)
503-326-2678 | ### Soil Washing (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|------------------|-------------------------------|--|---|---| | 10 | Naval Submarine Base,
Bangor Site A, OU 1,
WA (12/06/91) | Soil washing
with UV
oxidation of
ground water | Federal facility,
ordnance
detonation | Soil (7,100 cy) | Explosives (TNT,
RDX, DNT) | Predesign; PD
Completion
planned Winter
1993; Design
will begin
after
completion of
a treatability
study | Navy Lead/DoD
Funded IRP;
OHM,Remediation
Services Corp. | Harry Craig
503-326-3689
Patti Kelly
(DoD)
206-369-5099
Jeff Rodin
206-553-4497 | ### Solvent Extraction | Region | Site Hame, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|---|--|---
--|--| | 1 | Norwood PCBs, MA
(09/29/89) | Solvent
Extraction | PCB capacitor
manufacturing/
testing | Soil (35,000 cy),
Sediments (5,000
cy) | VOCs (TCE), SVOCs
(Trichlorobenzene),
PCBs, PAHs | In design;
Design
completion
planned Spring
1994 | Federal
lead/Fund
Financed;
Metcalf & Eddy
- Design
Contractor | Robert
Canciarulo
617-573-5778 | | 1 | 0'Connor*, ME
(09/27/89) | Solvent extraction (may be followed by s/s for lead) | Salvage and
electrical
transformer
recycling | Soil (23,500 cy),
Sediments
(quantity
unknown) | PCBs, PAHs | In design;
Design
completion
planned Winter
1995 | PRP
lead/Federal
oversight | Ross Gilleland
617-573-5766 | | 2 | Ewan Property*, NJ
(09/29/89)
See also Soil Washing | Solvent extraction (followed by Soil Washing to treat inorganics) | Industrial waste
dumping | Soil (22,000 cy) | VOCs (PCE, TCE,
TCA, Methylene
Chloride, BTX) | Predesign; PD
Completion
planned 1995;
Start date
contingent
upon progress
in OU-1.
Completion
estimate 1995. | In negotiation | Dave Rosoff
212-264-5397 | | 4 | Carolina Transformer,
NC (08/29/91) | Solvent extraction (may be followed by s/s) | Transformer repair | Soil (15,000 cy) | PCBs | In design;
Design
completion
planned Spring
1994 | Federal
lead/Fund
Financed | Luise Flores
404-347-7791 | | 6 | United Creosoting*, TX
(09/29/89) | Solvent extraction (critical fluid extraction followed by incineration of fluids) | Wood preserving | Soil (67,000 cy) | VOCs, Dioxins | In design;
Design
completion
planned Fall
1993 | State lead/Fund
Financed; C.F.
Systems,
proprietor of
propane cf
extraction | Earl G.
Hendrick
214-655-5519
LaReine Pound
(TX)
512-467-7897 | ### **Thermal Desorption** | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|--|---|--|---|--|---| | 1 | Cannon
Engineering/Bridgewater,
MA (03/31/88) | Thermal aeration
(vapors captured
on carbon) | Chemical waste
storage and
incineration
facility | Soil (11,000 cy) | VOCs (TCE, Vinyl
chloride,
Benzene, Toluene) | Completed; | PRP
lead/Federal
oversight;
Canonie
Engineering | Richard
Goehlert
617-573-5742 | | 1 | Re-Solve*, MA (09/24/87) | Thermal
Desorption | Chemical
reclamation
facility | Soil (22,500 cy) | PCBs | Being
installed;
Operation
planned summer
1993. | PRP
lead/Federal
oversight; ENSR | Joe Lemay
617-573-9622 | | 1 | McKin*, ME (07/22/85) | Thermal aeration
(vapors captured
on carbon) | Industrial
landfill | Soil (11,500 cy) | VOCs (TCE, BTX) | Completed; | PRP
lead/Federal
oversight;
Canonie
Engineering | Sheila Eckman
617-573-5784 | | 1 | Union Chemical Co., OU
1, ME (12/27/90) | Low temperature
thermal
treatment | Solvent recovery
facility, Paint
stripping | Soil (10,000 cy) | VOCs (TCE, DCE,
PCE, Xylene) | Design
completed but
not installed;
Being
installed in
summer 1994 | PRP
lead/Federal
oversight | Ed Hathaway
617-573-5782
Christopher
Rushton (ME
DEP)
207-287-2651 | | 1 | Ottati & Goss, NH
(01/16/87) | Thermal aeration | Drum storage/
disposal | Soil (16,000 cy) | VOCs (TCE, PCE,
DCA, Benzene) | Completed; | PRP
lead/Federal
oversight;
Canonie
Engineering | Stephen Calder
617-573-9626 | | 2 | Industrial Latex, OU 1,
NJ (09/30/92) | Low temperature
thermal
treatment | Manufacturing of chemical adhesives and natural and synthetic rubber compounds | Soil (38,000 cy),
Sludge (6 cy),
Solids (quantity
unknown), Soil
(800 gl) | PCBs | Predesign | Federal
Lead/Fund
Financed | Paola Pascetta
212-264-9001
Robert McKnight
212-264-1870 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--|--------------------------|--|--|---|--| | 2 | Lipari Landfill Marsh
Sediment*, NJ (07/11/88) | Low temperature
thermal
treatment | Industrial
landfill,
Municipal
landfill | Sediments (60,000
cy) | VOCs, SVOCs | Design
completed but
not installed;
Completion
planned Summer
1993 | In negotiation | Tom Graff
(USACE, Kansas
City)
816-426-2296 | | 2 | Metaltec/Aerosystems, OU
1 - Soil Treatment*, NJ
(06/30/86) | Low temperature
thermal
treatment
(vapors captured
on carbon) | Metal
Manufacturing | Soil (9,000 cy) | VOCs (TCE) | Being installed; Installation completion planned Winter 1993; Design complete; Contractor being procurred (Bids due June 1993) | Federal lead/Fund Financed; Army Corp of Engineers (Contractor)/ vendor unknown | Ron Rusin
212-264-1873
Mark Keast
816-426-5832
(x - 3032) | | 2 | Reich Farms*, NJ
(09/30/88) | Thermal
desorption
(vapors will be
captured on
carbon) | Drum storage/
disposal | Soil (6,000 cy) | VOCs (TCE, PCE,
TCA), SVOCs
(Phthalates) | Predesign | PRP
lead/Federal
oversight | Gary
Adamkiewicz
212-264-7592 | | 2 | Waldick Aerospace
Devices*, NJ (09/29/87) | Low temperature
thermal
treatment
(followed by
offsite s/s and
disposal) | Manufacture/
Electroplating of
Plane Parts | Soil (3,000 cy) | VOCs (TCE, PCE) | Operational;
Completion
planned Fall
1993;
Operational
since June
1993 | Federal
lead/Fund
Financed;
Chemical Waste
Management | George Buc
(USACE-NY
District)
908-389-3040
Ron Ackerman
(USACE-NY
District)
908-389-3040 | | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site Description | Media (Quantity) | Key'Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|--|--|---|--|---|-------------------------------------| | 2 | American Thermostat, NY
(06/29/90) | Low temperature
thermal
treatment | Thermostat
Manufacturing | Soil (15,000 cy),
Sediments (300
cy) | VOCs (PCE, TCE) | In design;
Design
completion
planned August
1993 | Federal
lead/Fund
Financed; TAMS
Consultants/
William
Environmental
Services.(Vendo | Christos
Tsiamis
212-264-5713 | | 2 | Claremont Polychemical -
Soil Remedy, NY
(09/28/90) | Low temperature
thermal
treatment | Paint/ink
formation | Soil (3,000 cy) | VOCs (PCE) | In design;
Design
completion
planned Fall
1993 | State lead/Fund
Financed;
USACE/Rust
Environmental | Dick Kaplin
212-264-3819 | | 2 | Fulton Terminals, Soil
Treatment, NY (09/29/89) | Low temperature
thermal
treatment | Former hazardous
waste storage
facility | Soil (4,000 cy) | VOCs (TCE, DCE,
Benzene, Xylene) | In design;
Design
completion
planned Summer
1993 | PRP
lead/Federal
oversight | Christos
Tsiamis
212-264-5713 | | 2 | Sarney Farm, NY
(09/27/90) | Thermal desorption (followed by onsite incineration of organics) | Industrial
landfill,
Municipal
landfill | Soil (quantity
unknown) | VOCs (Chloroform,
TCE, PCE,
Toluene), SVOCs
(Phthalates) | In design;
Design
completion
planned Winter
1993 | Federal
lead/Fund
Financed | Kevin Willis
212-264-8777 | | 2 | Solvent Savers, NY
(09/30/90)
See also Soil Vapor
Extraction | Low temperature
thermal
treatment | Solvent recovery
facility,
Chemical
reclamation | Soil (60,000 cy) | VOCs (DCE, TCE),
PCBs | Predesign; PD
Completion
planned Winter
1993 | PRP
lead/Federal
oversight | Lisa Wong
212-264-5712 | | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead
Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|---|--|---|--|---| | 3 | U.S.A. Letterkenny SE
Area, OU1*, PA
(06/28/91) | Low temperature thermal treatment (may need s/s for metals after thermal desorption) | Munitions
manufacturing/
storage, Drum
storage | Soil (14,000 cy) | VOCs (TCE,
Ethylbenzene,
Xylene) | Design
completed but
not installed;
Completion
planned Summer
1993 | Federal
facility;
McLaren Hart | Denis Orenshare
215-597-7858
Georgette Myers
(Letterkenny)
717-267-8483 | | 3 | Saunders Supply Co, OU
1, VA (09/30/91)
See also Dechlorination | Low temperature
thermal
treatment
(Vapors will be
captured on
carbon) | Wood preserving | Soil (25,000 cy) | SVOCs (PCP) | Predesign; PD
Completion
planned Fall
1993 | Federal
lead/Fund
Financed;
Ecology &
Environment, no
vendor yet | Andy Palestini
215-597-1286 | | 4 | Ciba-Geigy (MacIntosh
Plant) OU 4, AL
(07/14/92)
See also In situ
Flushing | Thermal
desorption
Liquid injection
incineration | Chemical
Manufacturing | Soil (110 cy),
Sludge (quantity
unknown) | VOCs (Chloroform,
Toluene, Xylene),
Biocides
(Atrazine,
Diazinon,
Prometryn,
Simazine) | Predesign; Design will also use treatability studies being conducted at OU-2 | PRP
lead/Federal
oversight | Charles King
404-347-2643 | | 4 | Ciba-Geigy Corp.
(MacIntosh Plant) OU 2,
AL (09/30/91)
See also In situ
Flushing | Low temperature thermal treatment to be evaluated during treatability study | Agriculture Applications, Pesticide manufacturing/use /storage, Other organic chemical manufacturing | Soil (130,000
cy), Sludge
(quantity
unknown) | VOCs, Biocides | In design; Design completion planned Winter 1995; Treatability studies ongoing | PRP
lead/Federal
oversight; CDM/
FPC (Demolition
/Design
contractors) | Charles King
404-347-2643 | | 4 | Smith's Farm Brooks, OU
1*, KY (09/30/91)
See also Dechlorination | Low temperature
thermal
treatment | Drum storage/
disposal | Soil (16,000 cy) | PCBs, PAHs
(Carcinogenic
PAHs) | Design
completed but
not installed;
Completion
planned Spring
1995 | PRP
lead/Federal
oversight | Tony DeAngelo
404-347-7791 | | | | | 1 | | | · | | بسيد سيستسنن | |--------|---|--|--|---|--|--|--|--| | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | | 4 | Aberdeen Pesticide
Dumps, OU 4, NC
(09/30/91) | Thermal desorption (treatment for organic vapors not yet determind | Pesticide
manufacturing/use
/storage | Soil (124,000 cy) | Biocides (DDT,
Toxaphene,
Benzene
Hexachloride) | Predesign; PD
Completion
planned
September 1993 | PRP
lead/Federal
oversight | Kay Crane
404-347-7791
Randy McElveen
919-733-2801 | | 4 | Potter's Septic Tank
Service Pits, NC
(08/05/92) | Low temperature
thermal
treatment | Waste petroleum
and septic tank
sludge disposal
pit | Soil (10,100 cy),
Sludge (quantity
unknown) | VOCs (BTEX), PAHs
(Carcinogenic
PAHs,
Naphthalene) | In design;
Design
completion
planned Summer
1994 | Federal
Lead/Fund
Financed | Beverly Hudson
404-347-7791 | | 4 | Sangamo/Twelve-
Mile/Hartwell PCB, OU 1,
SC (12/19/90) | Low temperature
thermal
desorption
(vapors captured
on carbon) | Capacitor
manufacturer | Soil (80,000 cy)
sludge (20,000
cy) | PCBs, VOCs | Design; Design
Completion
planned Fall
1993; | PRP
lead/Federal
oversight | Bernie Hayes
404-347-7791
Richard Haynes
(SC)
803-734-5487 | | 4 | Wamchem*, SC (06/30/88) | Thermal
desorption
(vapors captured
on carbon) | Former Dye
Manufacturing
Plant | Soil (2,000 cy) | VOCs (BTX) | Being
installed
Four seasons | PRP
lead/Federal
oversight | Terry Tanner
404-347-7791 | | 4 | Arlington Blending & Packaging Co., OU 1*, TN (06/28/91) See also Dechlorination | Thermal desorption; residual soil and vapor to be dechlorinated | Pesticide
manufacturing/use
/storage, Other
organic chemical
manufacturing | Soil (5,000 cy) | VOCs (DCE), SVOCs
(PCP), Biocides
(Chlordane,
Heptachlor) | In design;
Design
completion
planned Winter
1993 | PRP
lead/Federal
oversight | Derek Matory
404-347-7791 | | 5 | Acme Solvent Reclaiming,
Inc. OU 2, IL (12/31/90)
See also Soil Vapor
Extraction | Low temperature
thermal
treatment
(followed by s/s
for lead) | Industrial
landfill,
Municipal water
supply | Soil (6,000 cy) | VOCs (TCA, DCE,
DCA, TCE, PCE,
Vinyl chloride,
4-methyl 2
pentanone,,
Benzene), SVOCs
(Naphthalene),
PCBs | In design;
Design
completion
planned Summer
1994 | PRP
lead/Federal
oversight;
Harding Lawson
- Prime | Deborah Orr
312-886-7576 | Table 1-1 Remedial Actions: Site-specific Information By Innovative Treatment Technology Through FY 1992 | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site Description | Media (Quántity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|--|--|--|--|--| | 5 | Outboard Marine/Waukegan
Harbor, OU 3*, IL
(O3/31/89) | Low temperature
thermal
treatment | Marine Products
Manufacturing | Soil (16,000 cy),
Sediments
(quantity
unknown) | PCBs | Completed;
Summer 1992 | PRP
lead/Federal
oversight;
Soiltech | Cîndy Nolan
312-886-0400 | | 5 | American Chemical
Services*, IN (09/30/92)
See also Soil Vapor
Extraction | Low temperature
thermal
treatment | Other organic
chemical
manufacturing,
Solvent recovery
facility | Soil (quantity unknown), Sludge (quantity unknown), Solids (65,000 cy) | VOCs, PCBs | Predesign;
Schedule
pending
completion of
negotiation
with PRPs | In negotiation | Wayde Hartwick
312-886-7067 | | 5 | Anderson Development
(ROD Amendment)*, MI
(09/30/91) | Low temperature
thermal
treatment
off-site
disposal of
residuals | Other organic
chemical
manufacturing | Soil (8,000 cy),
Sludge (quantity
unknown) | Organics (MBOCAs,
4, 4'- Methylene,
Bis-2-chloroanili
ne) | Operational;
Completion
planned Summer
1993;
Treatment
began Jan. 5,
1992. In
pilot test,
MBOCAs reduced
from 2,800 ppm
in sludges to
1.6 ppm | PRP
lead/Federal
oversight;
Weston
Services, Inc | Jim Hahnenberg
312-353-4213 | | 5 | Carter Industries*, MI
(09/18/91) | Low temperature thermal treatment (followed by s/s of soils and incin. of PCB oil) | Scrap metal
salvager | Soil (46,000 cy),
Solids (quantity
unknown) | PCBs | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight;
Comnestoga-
Rovers
Associates | Jon Peterson
312-353-1264 | | 8 | Martin Marietta (Denver
Aerospace), CO
(09/24/90)
See also Soil Vapor
Extraction | Low temperature
thermal
treatment
(followed by s/s
of soils and
incin. of
vapors) | Aerospace
Equipment
Manufacturer -
Bulk storage
facility and
industrial
landfill | Soil (2,300 cy) | VOCs (TCE), PCBs | In design | PRP lead/State
oversight;
under RCRA;
Geraghty &
Miller | George Dancik
303-293-1506
Susan Chaki
(CO)
303-331-4832 | June 1993 | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------
--|---|--|------------------|-----------------------------|---|--|------------------------------| | 8 | Sand Creek Industrial,
OU 5*, CO (09/28/90) | Low temperature
thermal
treatment | Pesticide
manufacturing/use
/storage | Soil (8,000 cy) | Organics
(Biocides) | Predesign;
Prepared ROD
amendment to
change remedy
from soil
washing | Federal
lead/Fund
Financed | Erna Acheson
303-294-1971 | ### Other | Region | Site Hame, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|---|---|---|--|--|--| | 1 | South Municipal Water
Supply Well*, NH
(09/27/89)
See also Soil Vapor
Extraction | Air sparging | Ball Bearing
Manufacturing | Groundwater | VOCs
(PCE,TCA,TCE) | Being
installed;
Construction
to start
summer 1993 | PRP
lead/Federal
oversight | Roger Duwart
617-573-9628
Tom Andrews
(NH)
603-271-2910 | | 2 | Applied Environmental
Services, OU 1, NY
(06/24/91)
See also
Bioremediation (In
Situ), Soil Vapor
Extraction | Air sparging | Bulk petroleum and
hazardous waste
storage facility | Groundwater | VOCs (BTEX),
SVOCs | In design;
Design
completion
planned WInter
1993 | PRP lead/State
oversight | Andrew English
(NY)
518-457-0315
Jeff Tradd
518-457-1708 | | 3 | Brodhead Creek, OU 1,
PA (03/29/91) | CROW technology
using hot water
injection to
mobilize coal
tar | Coal gasification
site | Soil (200 cy),
Groundwater | PAHS, DNAPLS | Predesign; PD
Completion
planned Summer
1993 | PRP lead/Federal oversight; Remediation Technologies, Western Research Institute | John Banks
215-597-8555 | | 3 | Brown's Battery
Breaking Site, OU 2,
PA (07/02/92)
See also Other
Technologies | Limestone
barrier | Battery recycling/
disposal | Groundwater | Metals (Lead) | Predesign; PD
Completion
planned Winter
1993 | PRP
lead/Federal
oversight | Richard Watman
215-697-8996 | | 3 | Brown's Battery
Breaking Site, OU 2,
PA (07/02/92)
See also Chemical
Treatment | Fuming
Gasification | Battery recycling
/disposal | Soil (quantity
unknown), Solids
(quantity
unknown) | Metals (Lead),
PCBs, PAHs,
Chlorinated
Pesticides,
Phthalate esters | Predesign; PD
Completion
planned Winter
1993 | PRP
lead/Federal
oversight | Richard Watman
215-597-8996 | | 3 | Tonolli Corporation,
PA (09/30/92) | Limestone
barrier | Battery recycling
/disposal | Groundwater | Metals (Lead) | Predesign; PD
Completion
planned Summer
1993 | PRP
lead/Federal
oversight | Linda Dietz
215-597-6906 | ### Other (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|------------------------|---------------------------------|------------------|--|-----------|--|---------------------------------------| | 6 | Prewitt Abandoned Refinery, NM (09/30/92) See also Bioremediation (Ex Situ), Soil Vapor Extraction | Air Sparging | Crude oil refinery | Groundwater | Organics (NAPLs) | Predesign | PRP
lead/Federal
oversight | Monica
Chapa-Smith
214-655-6780 | | 6 | Petro-Chemical
Systems, Inc., OU 2,
TX (09/06/91)
See also Soil Vapor
Extraction | Air sparging | Petroleum refining
and reuse | Groundwater | VOCs (BTEX),
SVOCs
(Naphthalene) | Predesign | Federal
lead/Fund
Financed; not
chosen | Chris Villareal
214-655-6758 | THIS PAGE INTENTIONALLY LEFT BLANK ### **TABLE 1-2** ### REMEDIAL ACTIONS: INNOVATIVE TREATMENT TECHNOLOGIES BY EPA REGION Table 1-2 summarizes the innovative treatment technologies used at remedial action sites in each EPA region and within each region by state. | TECHNOLOGY | SITE NAME | STATE | TECHNOLOGY | SITE NAME | STATE | |--------------------------|--|---------------------------------------|--------------------------|--------------------------------------|-------| | | REGION 1 | | | REGION 2 (continued) | | | Soil Vapor Extraction | Kellogg-Deering Well Field | CT | Solvent Extraction | Envisor Description | | | Bioremediation (Ex situ) | Iron Horse Park | MA | Thermal Desorption | Ewan Property Industrial Latex, OU 1 | NJ | | Bioremediation (In situ) | Hocomonco Pond, ESD | MA | Thermal Desorption | Lipari Landfill Marsh Sediment | NJ | | Solvent Extraction | Norwood PCBs | MA | Thermal Desorption | Metaltec/Aerosystems, OU 1 | NJ | | Thermal Desorption | Cannon Engineering/Bridgewater | MA | Thermal Desorption | Reich Farms | NJ | | Thermal Desorption | Re-Solve | MA | Thermal Desorption | | ŊĴ | | Soil Vapor Extraction | Groveland Wells | MA | | Waldick Aerospace Devices | NJ | | Soil Vapor Extraction | Silresim | MA | Soil Vapor Extraction | A O Polymer, Soil treatment phase | NJ | | Soil Vapor Extraction | Wells G&H OU 1 | MA | Soil Vapor Extraction | FAA Technical Center | NJ | | Solvent Extraction | O'Connor | | Soil Vapor Extraction | Garden State Cleaners | NJ | | Thermal Desorption | McKin | ME | Soil Vapor Extraction | South Jersey Clothing | NJ | | Thermal Desorption | | ME | Soil Vapor Extraction | Swope Oil & Chem Co., OU 2 | NJ | | In situ Flushing | Union Chemical Co., OU 1 Tibbetts Road | ME | Bioremediation (Ex situ) | General Motors/Central Foundry OU 1 | NY | | Thermal Desorption | | NH | Bioremediation (Ex situ) | General Motors/Central Foundry OU 2 | NY | | Soil Vapor Extraction | Ottati & Goss | NH | Bioremediation (In situ) | Applied Environmental Services (GW) | NY | | | Mottolo Pig Farm | NH | Bioremediation (In situ) | Applied Environmental Services OU 1 | NY | | Soil Vapor Extraction | South Municipal Water Supply Wells | NH | Dechlorination | Wide Beach Development | NY | | Soil Vapor Extraction | Tibbetts Road | NH | In situ Flushing | Byron Barrel & Drum | NY | | Soil Vapor Extraction | Tinkham Garage | NH | In situ Flushing | Pasley Solvents and Chemicals | NY | | Air Sparging | South Municipal Water Supply Wells | NH | Thermal Desorption | American Thermostat | NY | | Soil Vapor Extraction | Stamina Mills | RI | Thermal Desorption | Claremont Polychemical - Soil | NY | | | | | Thermal Desorption | Fulton Terminals, Soil Treatment | NY | | | | · · · · · · · · · · · · · · · · · · · | Thermal Desorption | Sarney Farm | NY | | ÷ | | | Thermal Desorption | Solvent Savers | NY | | * | REGION 2 | | Soil Vapor Extraction | Applied Environmental Services OU 1 | NY | | | | | Soil Vapor Extraction | Circuitron Corporation, OU 1 | NY | | Bioremediation (In situ) | FAA Technical Center | NJ | Soil Vapor Extraction | Genzale Plating Company, OU 1 | NY | | Bioremediation (In situ) | Swope Oil & Chem Co., OU 2 | NJ | Soil Vapor Extraction | Mattiace Petrochemicals Company | NY | | Dechlorination | Myers Property | NJ | Soil Vapor Extraction | Pasley Solvents and Chemicals | NY | | In situ Flushing | Lipari Landfill | NJ | Soil Vapor Extraction | SMS Instruments (Deer Park) | NY | | In situ Flushing | Naval Air Engineering Center OU 7 | NJ | Soil Vapor Extraction | Solvent-Savers | NY | | In situ Flushing | Vineland Chemical, OU 1 and OU 2 | NJ | Soil Vapor Extraction | Vestal Water Supply 1-1 | NY | | Soil Washing | Ewan Property | NJ | Air Sparging | Applied Environmental Services QU 1 | NY. | | Soil Washing | King of Prussia | NJ | Soil Washing | GE Wiring Devices | PR | | Soil Washing | Myers Property | NJ | Soil Vapor Extraction | Upjohn Manufacturing Co. | PR | | Soil Washing | Vineland Chemical, OU 1 and OU 2 | NJ | · E | - I'l evansament anythis age | 1 14 | | | | | | | | | TECHNOLOGY | SITE NAME | STATE | TECHNOLOGY | SITE NAME | STATE | |--------------------------|--------------------------------------|-------|--------------------------|--|-------| | | REGION 3 | | | REGION 4 (continued) | | | Bioremediation (Ex situ) | Whitmoyer Laboratories, OU 3 | PA | Soil Washing | Cabot Carbon/Koppers | FL | | Thermal Desorption | U.S.A. Letterkenny SE Area, OU | PA · | Soil Washing | Whitehouse Waste Oil Pits | FL | | Soil Vapor Extraction | Bendix | PA | Soil Vapor Extraction | Hollingsworth Solderless | FL | | Soil Vapor Extraction | Cryochem, OU 3 | PA | Soil Vapor Extraction | Robins AFB, Landfill and Sludge Lagoon | | | Soil Vapor Extraction | Henderson Road | PA - | Dechlorination | Smith's Farm Brooks, OU 1 | KY | | Soil Vapor Extraction | Lord-Shope Landfill | PA | Thermal Desorption | Smith's Farm Brooks, OU 1 | KY | | Soil Vapor Extraction | Raymark | PA - | Bioremediation (Ex situ) | Benfield Industries | NC | | Soil
Vapor Extraction | Tyson's Dump | PA | Bioremediation (Ex situ) | Cape Fear Wood Preserving | NC | | Limestone Barrier | Brown's Battery Breaking Site | PA | Bioremediation (Ex situ) | Charles Macon Lagoon, Lagoon # 10 | NC | | Crow Technology | Brodhead Creek, OU 1 | PA | Bioremediation (In situ) | Benfield Industries | NC | | Fuming Gasification | Brown's Battery Breaking Site | PA | Chemical Treatment | JFD Electronics/Channel Master | NC | | Limestone Barrier | Tonolli Corporation | PA: | In situ Flushing | JADCO-Hughes | NC | | Bioremediation (Ex situ) | L.A. Clarke & Sons, Lagoon Sludge OU | VA | Soil Washing | Benfield Industries | NC | | Bioremediation (In situ) | L. A. Clarke & Sons, OU 1 | VA | Soil Washing | Cape Fear Wood Preserving | NC | | Dechlorination | Saunders Supply Co, OU 1 | VA . | Solvent Extraction | Carolina Transformer | NC | | In situ Flushing | L. A. Clarke & Sons, OU 1 | VA | Thermal Desorption | Aberdeen Pesticide Dumps, OU 4 | NC | | In situ Flushing | U.S. Titanium | VA | Thermal Desorption | Potter's Septic Tank Service Pits | NC | | Thermal Desorption | Saunders Supply Co, OU 1 | VA. | Soil Vapor Extraction | Charles Macon Lagoon, Lagoon # 7 | NC | | Soil Vapor Extraction | Arrowhead Associates/Scovill | VA · | Soil Vapor Extraction | JADCO-Hughes | NC | | Soil Vapor Extraction | Defense General Supply Center | VA - | Chemical Treatment | Palmetto Wood Preserving | SC | | Bioremediation (Ex situ) | Ordnance Works Disposal Areas | WV | Thermal Desorption | Sangamo/Twelve-Mile/Hartwell PCB | SC | | | · • | | Thermal Desorption | Wamchem | SC | | | | | Soil Vapor Extraction | Medley Farm, OU 1 | SC | | | | | Soil Vapor Extraction | SCRDI Bluff Road | SC | | | REGION 4 | | Dechlorination | Arlington Blending & Packaging | TN | | | | | Thermal Desorption | Arlington Blending & Packaging | TN | | In situ Flushing | Ciba-Geigy (MacIntosh Plant) OU 2 | AL | Soil Vapor Extraction | Carrier Air Conditioning | TN | | In situ Flushing | Ciba-Geigy (MacIntosh Plant) OU 4 | AL | - | Ç | | | Thermal Desorption | Ciba-Geigy (MacIntosh Plant) OU 2 | AL | | | | | Thermal Desorption | Ciba-Geigy (MacIntosh Plant) OU 4 | AL | | | | | Bioremediation (Ex situ) | Brown Wood Preserving | FL | | REGION 5 | | | Bioremediation (Ex situ) | Cabot Carbon/Koppers | FL | | | | | Bioremediation (Ex situ) | Dubose Oil Products | FL | Bioremediation (Ex situ) | Galesburg/Koppers | IL. | | Bioremediation (Ex situ) | Whitehouse Waste Oil Pits | FL | Thermal Desorption | Acme Solvent Reclaiming, Inc. | IL | | Bioremediation (In situ) | Cabot Carbon/Koppers | FL | Thermal Desorption | Outboard Marine/Waukegan Harbor | 耴 | | Bioremediation (In situ) | Cabot Carbon/Koppers (Groundwater) | FL | Soil Vapor Extraction | Acme Solvent Reclaiming, Inc. | IL | | TECHNOLOGY | SITE NAME | STATE | TECHNOLOGY | SITE NAME | STATE | |--------------------------|------------------------------------|-------|---------------------------|---------------------------------------|-------| | | REGION 5 (continued) | | | REGION 5 (continued) | | | Bioremediation (In situ) | Seymour Recycling | IN | Soil Vapor Extraction | Zanesville Well Field | ОН | | Bioremediation (In situ) | Seymour Recycling (Ground water) | IN | ·Bioremediation (Ex situ) | Moss-American | WI | | In situ Flushing | Ninth Avenue Dump | IN | Bioremediation (In situ) | Hagen Farm Site, Ground Water OU | WI | | Thermal Desorption | American Chemical Services | IN | Bioremediation (In situ) | Onalaska Municipal Landfill | WI | | Soil Vapor Extraction | American Chemical Services | IN | Soil Washing | Moss-American | WI | | Soil Vapor Extraction | Enviro. Conservation and Chemical | · IN | Soil Vapor Extraction | City Disposal Corporation Landfill | WI | | Soil Vapor Extraction | Fisher Calo Chem | IN | Soil Vapor Extraction | Hagen Farm | WI | | Soil Vapor Extraction | MIDCO I | IN | Soil Vapor Extraction | Muskego Sanitary Landfill | WI | | Soil Vapor Extraction | Main Street Well Field | IN | Soil Vapor Extraction | Wausau Groundwater Contamination | WI | | Soil Vapor Extraction | MIDCO II | IN | • | | | | Soil Vapor Extraction | Seymour Recycling | IN | , | | | | Soil Vapor Extraction | Wayne Waste Reclamation | IN | | | | | Bioremediation (Ex situ) | Cliffs/Dow Dump | MI | | REGION 6 | | | In situ Flushing | Rasmussen Dump | MI | | | | | In situ Vitrification | Ionia City Landfill | MI | Soil Washing | Arkwood | AR | | Thermal Desorption | Anderson Development | MI | Bioremediation (Ex situ) | Old Inger Oil Refinery | LA | | Thermal Desorption | Carter Industries | MI | Bioremediation (Ex situ) | Prewitt Abandoned Refinery | NM | | Soil Vapor Extraction | Chem Central | MI | Bioremediation (In situ) | Atchison/Santa Fe/Clovis | NM | | Soil Vapor Extraction | Clare Water Supply | MI | Soil Vapor Extraction | Prewitt Abandoned Refinery | NM | | Soil Vapor Extraction | Electro-Voice, OU 1 | MI | Soil Vapor Extraction | South Valley | NM | | Soil Vapor Extraction | Kysor Industrial | MI | Air Sparging | Prewitt Abandoned Refinery | NM | | Soil Vapor Extraction | Peerless Plating | MI | Bioremediation (Ex situ) | Oklahoma Refining Co. | OK | | Soil Vapor Extraction | Springfield Township Dump | MI | Bioremediation (In situ) | Oklahoma Refining Co. | OK | | Soil Vapor Extraction | Sturgis Municipal Well Field | MI | Soil Vapor Extraction | Tinker AFB (Soldier Creek Bldg. 3001) | OK | | Soil Vapor Extraction | ThermoChem, Inc. OU 1 | MI | Bioremediation (Ex situ) | North Cavalcade Street | TX | | Soil Vapor Extraction | Verona Well Field (Thomas Solvent) | MΙ | Bioremediation (Ex situ) | Sheridan Disposal Services | TX | | Soil Vapor Extraction | Verona Well Field, OU 2 | MI | Bioremediation (In situ) | French Limited | TX | | Bioremediation (Ex situ) | Burlington Northern Railroad Tie | MN | In situ Flushing | Koppers/Texarkana | TX | | Bioremediation (Ex situ) | Joslyn Manufacturing and Supply | MN | In situ Flushing | South Cavalcade Street | TX | | Bioremediation (Ex situ) | South Andover Salvage Yard OU 2 | MN | Soil Washing | Koppers/Texarkana | TX | | Soil Vapor Extraction | Long Prairie GW Contamination | MN | Soil Washing | South Cavalcade Street | TX | | Bioremediation (In situ) | Allied Chem & Ironton Coke, OU 2 | ОН | Solvent Extraction | United Creosoting | TX | | Soil Washing | United Scrap Lead/SIA | ОН | Soil Vapor Extraction | Petro-Chemical Systems, Inc. OU 2 | TX | | Soil Washing | Zanesville Well Field | ОН | Air Sparging | Petro-Chemical Systems, Inc. OU 2 | TX | | Soil Vapor Extraction | Miami County Incinerator | OH | | • . | | | Soil Vapor Extraction | Pristine (ROD Amendment) | OH | | | | | TECHNOLOGY | SITE NAME | <u>STATE</u> | TECHNOLOGY | SITE NAME S | TATE | |--------------------------|---------------------------------------|--------------|--------------------------|--------------------------------------|------| | | REGION 7 | | | REGION 9 | | | Bioremediation (Ex situ) | Vogel Paint & Wax | IA | Soil Vapor Extraction | Hassayampa Landfill | ΑZ | | Bioremediation (In situ) | People's Natural Gas | IA | Soil Vapor Extraction | Indian Bend Wash, South Area | ΑZ | | Bioremediation (In situ) | Pester Burn Pond | KS | Soil Vapor Extraction | Mesa Area Ground Water Contamination | ΑZ | | In situ Flushing | Pester Burn Pond | KS | Soil Vapor Extraction | Motorola 52nd Street | ΑZ | | Soil Vapor Extraction | Coleman Operable Unit 29th and | KS | Soil Vapor Extraction | Phoenix-Goodyear Airport Area | ΑZ | | In situ Flushing | Lee Chemical | MO | Bioremediation (Ex situ) | J.H. Baxter | CA | | Soil Vapor Extraction | Hastings GW Contamination (Col. Ave.) | NE | Bioremediation (Ex situ) | Jasco Chemical Co. | CA | | Soil Vapor Extraction | Hastings GW Contamination (Far Marco) | NE | Bioremediation (In situ) | Castle Air Force Base, OU 1 | CA | | Soil Vapor Extraction | Hastings GW Contamination, Well #3 | NE | Bioremediation (In situ) | Koppers Company, Inc. (Oroville) | CA | | Soil Vapor Extraction | Lindsay Manufacturing | NE | Soil Washing | FMC (Fresno) | CA | | Soil Vapor Extraction | Waverly Groundwater Contamination | NE | Soil Washing | Koppers Company, Inc. (Oroville) | CA | | | | | Soil Washing | Sacramento Army Depot, Oxidation | | | | | | _ , | Lagoon | CA | | | 9 | | Soil Vapor Extraction | Fairchild Semiconductor (San Jose) | CA | | 4, | REGION 8 | | Soil Vapor Extraction | Fairchild Semiconductor/MTV-I | CA | | | | | Soil Vapor Extraction | Fairchild Semiconductor/MTV-II | CA | | Bioremediation (Ex situ) | Broderick Wood Products OU 2 | CO | Soil Vapor Extraction | IBM (San Jose) | CA | | Bioremediation (In situ) | Broderick Wood Products OU 2 | CO | Soil Vapor Extraction | Intel, Mountain View | CA | | In situ Vitrification | Rocky Mountain Arsenal, M-1 Basins | CO | Soil Vapor Extraction | Intersil/Siemens | CA | | Thermal Desorption | Martin Marietta (Denver Aerospace) | CO | Soil Vapor Extraction | Lawrence Livermore National Lab | CA | | Thermal Desorption | Sand Creek Industrial, OU 5 | CO | Soil Vapor Extraction | Monolithic Memories/AMD - Arques | CA | | Soil Vapor Extraction | Chemical Sales Company, OU 1 | CO | Soil Vapor Extraction | National Semiconductor (MM) | CA | | Soil Vapor Extraction | Martin Marietta (Denver Aerospace) | CO | Soil Vapor Extraction | Pacific Coast Pipeline | CA | | Soil Vapor Extraction | Rocky Flats OU 2, Interim Action | CO | Soil Vapor Extraction | Purity Oil Sales OU 2 | CA | | Soil Vapor Extraction | Rocky Mountain Arsenal OU 18 | CO | Soil Vapor Extraction | Raytheon, Mountain View | CA | | Soil Vapor Extraction | Sand Creek Industrial OU 1 | CO | Soil Vapor Extraction | Sacramento Army Depot, Tank 2 | CA | | Bioremediation (Ex situ) | Burlington Northern (Somers Plant) | MT | Soil Vapor Extraction | Signetics (AMD 901), TRW OU | CA | | Bioremediation (Ex situ) | Idaho Pole Company | MT | Soil Vapor Extraction | Signetics (Advanced Micro Devices) | CA | | Bioremediation (Ex situ) | Libby Ground
Water Contamination | ΜT | Soil Vapor Extraction | Solvent Service | CA | | Bioremediation (In situ) | Burlington Northern (Somers Plant) | MT | Soil Vapor Extraction | Spectra Physics, OU 1 | CA | | Bioremediation (In situ) | Idaho Pole Company | MT | Soil Vapor Extraction | Teledyne Semiconductors | CA | | Bioremediation (In situ) | Libby Ground Water Contamination | MT | Soil Vapor Extraction | Van Waters and Rogers | CA | | In situ Flushing | Idaho Pole Company | MT | Soil Vapor Extraction | Watkins-Johnson | CA | | Bioremediation (Ex situ) | Wasatch Chemical | UT | 1 | • | | | Chemical Treatment | Portland Cement Co. (Kiln Dust) | UT | | | | | In situ Vitrification | Wasatch Chemical | UT | I self | | | June 1993 | TECHNOLOGY | SITE NAME | STATE | TECHNOLOGY | SITE NAME | STATE | |--------------------------|-------------------------------------|-------|------------|--|-------| | | REGION 10 | | | | | | Bioremediation (Ex situ) | McChord AFB Washrack Treatment Area | AK | | | | | Bioremediation (In situ) | Eielson Air Force Base | AK | | | | | Soil Vapor Extraction | Eielson Air Force Base | ΑK | | | | | In situ Flushing | Union Pacific Railroad Sludge | ID | | | | | Bioremediation (Ex situ) | Umatilla Army Depot Activity | OR | | | | | In situ Flushing | United Chrome Products | OR | | | | | Soil Washing | Gould Battery | OR | | | | | Soil Washing | Naval Submarine Base, Bangor Site A | WA | | | | | Soil Vapor Extraction | Commencement Bay/S. Tacoma Channel | WA | • | | | | | | | to. | $(\mathbf{x}_{\mathbf{k}})_{\mathbf{k}} = (\mathbf{x}_{\mathbf{k}})_{\mathbf{k}} + (\mathbf{x}_{\mathbf{k}})_{\mathbf{k}}$ | | #### **TABLE 1-3** #### REMEDIAL ACTIONS: PROJECT STATUS BY INNOVATIVE TREATMENT TECHNOLOGY Table 1-3 lists the applications of innovative treatment technologies at NPL sites by technology and summarizes the status of the specific application. The symbols used in this table are: - PD In **predesign**: A site may be considered to be in predesign if EPA is negotiating the consent decree for the design with the responsible party, the lead agency is preparing the predesign report, the lead agency is contracting for the design firm, or the lead agency is conducting a treatability study or field investigation before beginning actual design work. - D In design: A site is considered to be in design after the design contractor has begun work. - D/I Design completed but not installed: This symbol is used if the **design** work had been completed but **installation** work has not yet begun at the time of publication of this report. - I Being installed: An innovative treatment technology is "being installed" from the time the construction contract has been awarded until the time the treatment system has begun operation. For some technologies, this is a relatively short phase of the project, because such projects are assembled quickly on site. For other technologies, the period of installation lasts several construction seasons. - O Operational. A treatment technology is operational once it has been constructed and is functional. The length of time required to complete the operation phase depends on such factors as the nature of the technology, the quantity of material to be treated, and the concentrations of the contaminants at the start of treatment. - C Completed: A treatment technology project is considered to be completed when the operation of the treatment technology ceases. Other site activities still may be planned or underway. | REGION | BIOREMEDIATION (EX SITU) | <u>STATUS</u> | REGION | BIOREMEDIATION (IN SITU) | STATUS | |--------|--|----------------------|--------|--|---------------------------------------| | 2 . | General Motors/Central Foundry Division, OU 1, NY | PD | 2 | Swope Oil & Chem Co., OU 2, NJ | PD | | 2 | General Motors/Central Foundry Division, OU 2, NY | PD | 3 | L. A. Clarke & Sons, OU 1 (Soils), VA | PD | | 3 | Ordnance Works Disposal Areas, WV | PD | 4 | Benfield Industries, NC | PD | | 4 | Benfield Industries, NC | PD | 6 | Oklahoma Refining Co., OK | PD | | 5 | Galesburg/Koppers, IL | PD | 7 | Pester Burn Pond, KS | PD | | 5 | Moss-American, WI | PD | 7 | People's Natural Gas, IA | PD | | 5 | South Andover Salvage Yard OU 2, MN | PD | 8 | Idaho
Pole Company, MT | PD | | 6 | Prewitt Abandoned Refinery, NM | PD | 2 | Applied Environmental Services, OU 1, NY | D | | 6 | Oklahoma Refining Co., OK | PD | 2 | Applied Environmental Services (Ground water), NY | D | | 6 | Sheridan Disposal Services, TX | PD | 4 | Cabot Carbon/Koppers (Ground water), FL | D | | 8 | Idaho Pole Company, MT | PD | 4 | Cabot Carbon/Koppers, FL | D | | 9 | Jasco Chemical Co., CA | PD | 5 | Hagen Farm Site, Ground Water Control OU, WI | \mathbf{D}° | | 3 | L.A. Clarke & Sons, Lagoon Sludge OU, VA | D | 5 | Allied Chem & Ironton Coke, OU 2, OH | D | | 3 | Whitmoyer Laboratories, OU 3, PA | D | 9 | Castle Air Force Base, OU 1, CA | D · | | 4 | Cabot Carbon/Koppers, FL | D | 9 | Koppers Company, Inc. (Oroville Plant), CA | D | | 4 | Charles Macon Lagoon, Lagoon #10, NC | D | . 10 | Eielson Air Force Base, AK | D | | 4 | Whitehouse Waste Oil Pits (amended ROD), FL | D | 2 | FAA Technical Center, NJ | D/I | | 5 | Cliffs/Dow Dump, MD | D | 5 | Onalaska Municipal Landfill, WI | D/I | | 6 | North Cavalcade Street, TX | D | 1 | Hocomonco Pond, ESD, MA | I | | 9 | J.H. Baxter, CA | \mathbf{D}_{\cdot} | 8 | Broderick Wood Products OU 2, CO | I | | 10 | Umatilla Army Depot Activity, Soil Operable Unit, OR | D | 8 | Burlington Northern (Somers Plant), MT | I | | 10 | McChord AFB Washrack Treatment Area, AK | D | 5 | Seymour Recycling (Ground water), IN | 0 | | 4 | Cape Fear Wood Preserving, NC | D/I | 6 | Atchison/Santa Fe/Clovis, NM | 0 | | 4 | Dubose Oil Products, FL | I | 6 | French Limited, TX | 0 | | 8 | Broderick Wood Products OU 2, CO | I | 8 | Libby Ground Water Contamination, MT | 0 | | 1 | Iron Horse Park, MA | O . | 5 | Seymour Recycling, IN | С | | 5 | Burlington Northern Railroad Tie Treating Plant, MN | 0 | | | | | 5 | Joslyn Manufacturing and Supply Co., MN | 0 | 1 | | | | 6 | Old Inger Oil Refinery, LA | 0 | REGION | CHEMICAL TREATMENT | STATUS | | 7 | Vogel Paint & Wax, IA | 0 | | | | | 8 | Burlington Northern (Somers Plant), MT | 0 | 4 | JFD Electronics/Channel Master, NC | PD | | 8 | Wasatch Chemical, UT | 0 | 8 | Portland Cement Co. (Kiln Dust No.2 and No.3) OU 2, U | | | 8 | Libby Ground Water Contamination, MT | 0 | 4 | Palmetto Wood Preserving, SC | C | | 4 | Brown Wood Preserving, FL | С | | | | | | | | | and the second of o | · · · · · · · · · · · · · · · · · · · | | REGION | <u>DECHLORINATION</u> | STATUS | REGION | SOIL VAPOR EXTRACTION | <u>STATUS</u> | |---------------|---|---------------|--------|--|---------------| | 3 | Saunders Supply Co, OU 1, VA | PD | 1 | Tibbetts Road, NH | PD | | 2 | Myers Property, NJ | D | 1 | Stamina Mills, RI | PD | | 4 | Arlington Blending & Packaging Co., OU 1, TN | D | 2 | Solvent Savers, NY | PD | | 4 | Smith's Farm Brooks, OU 1, KY | D/I | 2 | Vestal Water Supply 1-1, NY | PD | | 2 | Wide Beach Development, NY | С | 2 | Mattiace Petrochemicals Company, OU 1, NY | PD | | | | | 2 | Swope Oil & Chem Co., OU 2, NJ | PD | | | | | 3 | Cryochem, OU 3, PA | PD | | | | | 3 | Bendix, PA | PD | | | | | 3 | Arrowhead Associates/Scovill, OU 1, VA | PD | | REGION | IN SITU FLUSHING | STATUS | 4 | Robins AFB, Landfill and Sludge Lagoon, OU 1, GA | PD | | | | | 4 | Medley Farm, OU 1, SC | PD | | 1 . | Tibbetts Road, NH | PD | 4 | SCRDI Bluff Road, SC | PD | | 2 | Byron Barrel & Drum, NY | PD | 5 | MIDCO II, IN | PD | | 4 | Ciba-Geigy Corp. (MacIntosh Plant) OU 2, AL | PD | 5 | Zanesville Well Field, OH | PD | | 4 | Ciba-Geigy (MacIntosh Plant) OU 4, AL | PD | 5 | ThermoChem, Inc. OU 1, MI | PD | | 6 | Koppers/Texarkana, TX | PD | 5 | City Disposal Corporation Landfill, WI | PD | | · 7 | Pester Burn Pond, KS | PD | 5 | MIDCO I, IN | PD | | 8 | Idaho Pole Company, MT | PD | 5 | Clare Water Supply, MI | PD | | 10 | Union Pacific Railroad Sludge Pit, ID | PD | 5 | Peerless Plating, MI | PD | | 2 | Vineland Chemical, OU 1 and OU 2, NJ | D | 5 | Electro-Voice, OU 1, MI | PD | | 2 | Pasley Solvents and Chemicals, Inc., NY | D | 5 | Springfield Township Dump, MI | PD | | 2 | Naval Air Engineering Center OU 7, interim action, NJ | D | 5 | Sturgis Municipal Well Field, MI | PD | | 3 | L. A. Clarke & Sons, OU 1 (Soils), VA | D | 5 | American Chemical Services, IN | PD | | 3 | U.S. Titanium, VA | D | 6 | Prewitt Abandoned Refinery, NM | PD | | 5 | Rasmussen Dump, MI | D | 6 | Petro-Chemical Systems, Inc., OU 2, TX | PD | | . 5 | Ninth Avenue Dump, IN | D | 7 | Coleman Operable Unit 29th and Mead, KS | PD | | . 6 | South Cavalcade Street, TX | D | 8 | Rocky Flats OU 2, Interim Remedial Action Plan, CO | PD | | 4 | JADCO-Hughes, NC | I | 9. | Motorola 52nd Street, AZ | PD | | 7 | Lee Chemical, MO | I | 9 | Indian Bend Wash, South Area, OU 1, AZ | PD | | 2 | Lipari Landfill, NJ | 0 | 9 | Purity Oil Sales OU 2, CA | PD | | 10 | United Chrome Products, OR | 0 | 9 | Lawrence Livermore National Laboratory, CA | PD | | | | | 1 | Silresim, MA | D | | REGION | IN SITU VITRIFICATION | STATUS | 1 | Kellogg-Deering Well Field, CT | D | | | , | | 1 | Tinkham Garage, NH | D | | 5 | Ionia City Landfill, MI | D | 2 | Applied Environmental Services, OU 1, NY | Ď | | 8 | Rocky Mountain Arsenal, M-1 Basins (OU 16), CO | D | 2 | Garden State Cleaners, NJ | D | | 8 | Wasatch Chemical, UT | D | 2 | Circuitron Corporation, OU 1, NY | Ď | | | | • | 2 | Pasley Solvents and Chemicals, Inc., NY | D | | REGION SOIL VAPOR EXTRACTION (continued) STATUS | REGION | SOIL VAPOR EXTRACTION (continued) | <u>STATUS</u> | DECION | CON MADOD EVED ACTION (continued) | CALVALALO | |--|--------|--|---------------|--------|---|-----------| | 2 Genzale Plating Company, OÜ 1, NY 2 South Jersey Clothing, NU 3 Defense General Supply Center, OU 5, VA 4 Charles Macoru Lagoon, Lagoon #7, OU 1, NC 5 Lagoon #7, OU 1, NC 6 D 6 Hagen Farm, WI 7 D 7 Hastings GW Contamination (Colorado Ave), NE 8 Martin Marietta Charles (Am Davids Manufacturing, NE 9 Signetics (AMD 901), TRW OU, CA 1 South Municipal Water Supply Well, NH 2 Signetics (AMD 901), TRW OU, CA 1 Heating Supply Supply Supply Well, NH 2 Signetics (AMD 901), TRW OU, CA 2 Signetics (AMD 901), TRW OU, CA 3 Ryards, PA 4 D 4 Carrier Air Condition, NI 5 Water Area (North A South Fac), NI 6 Signetics (Add Na Parker), NP 6 Seymour Recycling, NI 6 Verona Well Field, ND 7 Hastings GW Contamination (Area (North & South Fac), MI 7 Hastings GW Contamination (Area (North & South Fac), NI 8 Spectra Physics (Area Ground Water Contamination, AZ 9 Pacific Coast Pipeline, CA 9 Pacific Coast Pip | 2 | A O Delumes Seil treatment share NI | n | REGION | SOLU VAPOR EXTRACTION (continued) | STATUS | | 2 South Jersey Clothing, NT 3 Defense General Supply Center, OU 5, VA D 3 Defense General Supply Center, OU 5, VA D 3 Raymark, PA 1 J 3 Lord-Shope Landfill, PA D 9 Signetics (AMD 901), TRW OU, CA 1 I 4 Charles Macon Lagoon, Lagoon #7, OU 1, NC D 1 Groveland Wells, MA D 1 Wells G&H OU 1, MA D 2 SMS Instruments (Deer Park), NY D 5 Hagen Farm, WI D 5 Kysor Industrial, MI D 6 Wayne Waste Reclamation, IN D 7 Wayne Waste Reclamation, IN D 8 Main Street Well Field, IN D 9 Main Street Well Field, IN D 9 Main Street Well Field, IN D 1 Seymour Recycling, IN D 1 Wasting GW Contamination, WE D 1 Misani County Incinerator, OH D 1 Misani County Incinerator, OH D 1 Misanie GW Contamination (Colorado Ave), NE D 1 Hastings GW Contamination (Far-Mar Co.), NE D 2 Hassayampa Landfill, AZ D 3 Martin Marietta (Dever Aerospace), CO D 4 Hassayampa Landfill, AZ D 5 Wayne Waster Reclamation, Far-Mar Co.), NE D 6 Hastings GW Contamination (Far-Mar Co.), NE D 7 Hastings GW Contamination (Far-Mar Co.), NE D 8 Martin Marietta (Dever Aerospace), CO D 9 Hassayampa Landfill, AZ D 9 Watkins-Johnson, CA D 10 Commencement Bay/S. Tacoma Channel/Well
12A, WA D 10 Fairchild Semiconductor/MTV-I, CA Sem | | | | , | Mauria Din Enna MII | 7 | | 3 Defense General Supply Center, OU 5, VA | | | | 1 | | I. | | 3 Lord-Shope Landfill, PA | | | | 1 - | | 1 7 | | 4 Charles Macon Lagoon, Lagoon #7, OU 1, NC D 4 JADCO-Highes, NC D 5 Hagen Farm, WI D 5 Fisher Calo Chem, IN D 5 Kysor Industrial, MI D 5 Wayne Waste Reclamation, IN D 6 Wayne Waste Reclamation, IN D 7 Waverly Groundwater Contamination, NE D 8 Sand Creek Industrial, MI D 9 Seymour Recycling, IN 10 Seymour Recycling, IN D 11 Groveland Wells, MA D 12 SMS Instruments (Deer Park), NY D 13 Tyson's Dump, PA D 14 Hastings GW Contamination, Well No. 3, NE D 15 Seymour Recycling, IN D 16 Eaviro. Conservation and Chemical (ROD Amendment) D 17 Waverly Groundwater Contamination, NE D 18 Sand Creek Industrial OU 1, CO D 19 Intersil/Siemens, CA D 10 Intersil/Siemens, CA D 10 Main County Incinerator, OH D 17 Hastings GW Contamination (Colorado Ave), NE D 18 Sand Creek Industrial OU 1, CO D 19 Intersil/Siemens, CA D 10 Seymour Recycling, IN D 10 Waverly Groundwater Contamination, NE D 10 Seymour Recycling, IN D 11 Wells G&H OU 1, MA D 12 SMS Instruments (Deer Park), NY D 13 Tyson's Dump, PA D 14 Hastings GW Contamination, Well No. 3, NE D 15 Seymour Recycling, IN D 16 Watches God Count of Coloration (ROD Amendment) D 17 Watches Industrial OU 1, CO D 18 Intersil/Siemens, CA D 19 National Semiconductor (Monolithic Memories), CA D 19 National Semiconductor (Monolithic Memories), CA D 10 Comencement Bay/S. Taconna Channel/Well 12A, WA D 10 Intel, Mountain View, CA D 10 Septent Physics, OU 1, | | | | | | 1 | | A JADCO-Hughes, NC D 1 Wells G&H OU I, MA O | - | | | | | 1 | | S Hagen Farm, WI | | | | | | | | 5 Fisher Calo Chem, IN | | | | | | | | 5 Kysor Industrial, MI D 3 Henderson Road, PA O 5 Wayne Waste Reclamation, IN D 5 Verona Well Field, OU 2, MI O 5 Acne Solvent Reclaiming, Inc. OU 2, IL D 5 Seymour Recycling, IN O 5 Main Street Well Field, IN D 7 Hastings GW Contamination, Well No. 3, NE O 5 Enviro. Conservation and Chemical (ROD Amendment) D 7 Hastings GW Contamination, Well No. 3, NE O 5 Chem Central, MI D 8 Sand Creek Industrial OU 1, CO O 5 Miami County Incinerator, OH D 9 IBM (San Jose), CA O 6 Pristine (ROD Amendment), OH D 9 Impressive Endustrial OU 1, CO O 5 Miami County Incinerator, OH D 9 Impressive Endustrial OU 1, CO O 6 Tristine (ROD Amendment), OH D 9 Impressive Endustrial OU 1, CO O 6 Tristine (ROD Amendment) D 9 Impressive Endustrial OU 1, CO | | | | | | | | 5 Wayne Waste Reclamation, IN D 5 Verona Well Field, OU 2, MI O 5 Acme Solvent Reclaiming, Inc. OU 2, IL D 5 Seymour Recycling, IN O 5 Main Street Well Field, IN D 7 Hastings GW Contamination, Well No. 3, NE O 5 Enviro. Conservation and Chemical (ROD Amendment) D 7 Waverly Groundwater Contamination, NE O 5 Chem Central, MI D 8 Sand Creek Industrial OU 1, CO O 5 Miani County Incinerator, OH D 9 IBM (San Jose), CA O 5 Pristine (ROD Amendment), OH D 9 Intersil/Siemens, CA O 6 Trisker AFB (Soldier Creek Bidg. 3001), OK D 9 Intersil/Siemens, CA O 6 Tinker AFB (Soldier Creek Bidg. 3001), OK D 9 Phoenix-Goodyear Airport Area (North & South Fac), MI O 7 Hastings GW Contamination (Colorado Ave), NE D 9 Spectra Physics, OU 1, CA O 8 Martin Marietta (Denver Aerospace), CO D | | | _ | | | | | 5 Acme Solvent Reclaiming, Inc. OU 2, IL D 5 Main Street Well Field, IN D 5 Enviro. Conservation and Chemical (ROD Amendment) D 5 Chem Central, MI | | | | | | | | 5 Main Street Well Field, IN 5 Enviro. Conservation and Chemical (ROD Amendment) 6 Enviro. Conservation and Chemical (ROD Amendment) 7 Waverly Groundwater Contamination, NE 0 Chem Central, MI 9 Sand Creek Industrial OU 1, CO 0 Co Miami County Incinerator, OH 9 IBM (San Jose), CA 0 Chemical RoD Amendment), OH 1 D 9 Intersil/Siemens, CA 0 Chemical Sales Company, OU 1, CO 1 Chemical Sales Company, OU 1, CO 1 Chemical Sales Company, OU 1, CO 2 Watkins-Johnson, CA 9 Pacific Coast Pipeline, CA 9 Watkins-Johnson, CA 9 Pacific Coast Pipeline, CA 9 Pacific Coast Pipeline, CA 9 Pacific Coast Pipeline, CA 9 Raytheon, Mountain View, CA 9 Fairchild Semiconductor/MTV-I, CA 9 Raytheon, Mountain View, CA 9 Fairchild Semiconductor/MTV-II, CA 1 Carrier Air Conditioning, TN** 1 D/I 1 Long Prairie Groundwater Contamination, MN 1 D/I 1 Waverly Groundwater Contamination, NE 0 Waverly Groundwater Contamination, NE 0 Chamical Role Nemical (ROD Amendment) Nemic | | | | | | | | 5 Enviro. Conservation and Chemical (ROD Amendment) | | | | | | | | 5 Chem Central, MI 5 Miami County Incinerator, OH 5 Miami County Incinerator, OH 6 Pristine (ROD Amendment), OH 7 Muskego Sanitary Landfill, Interim Action OU 1, WI 8 Mesa Area Ground Water Contamination, AZ 9 Mesa Area Ground Water Contamination, AZ 0 Tinker AFB (Soldier Creek Bldg. 3001), OK 9 Phoenix-Goodyear Airport Area (North & South Fac), MI 0 Hastings GW Contamination (Colorado Ave), NE 1 Mastings GW Contamination (Far-Mar Co.), NE 1 Mastings GW Contamination (Far-Mar Co.), NE 2 Martin Marietta (Denver Aerospace), CO 3 Chemical Sales Company, OU 1, CO 4 Massayampa Landfill, AZ 5 Martin Marietta (Denver Aerospace), CO 6 Massayampa Landfill, AZ 6 Martin Marietta (Denver Aerospace), CO 7 Lindsay Manufacturing, NE 8 Martin Marietta (Denver Aerospace), CO 9 Massayampa Landfill, AZ 9 Matkins-Johnson, CA 9 Massayampa Landfill, AZ 9 Martin Marietta (Denver Aerospace), CO 9 Pacific Coast Pipeline, CA 9 Monolithic Memories/AMD - Arques, Subunit 2, Memories, AMD - Arques, Subunit 2, CA 9 Monolithic Memories, AMD - Arques, Subunit 2, CA 9 Monolithic Memories, AMD - Arques, Subunit 2, CA 9 Monolithic Memories, AMD - Arques, Subunit 2, CA 9 Monolithic Memories, AMD - Arques, Subunit 2, CA 9 Monolithic Memories, AMD - Arques, Subunit 2, CA 9 Monolithic Memories, AMD - Arques, Subunit 2, CA 9 Monolithic Memories, AMD - Arques, Subunit 2, CA 9 Monolithic Memories, AM | | | _ | | | _ | | 5 Miami County Incinerator, OH 5 Pristine (ROD Amendment), OH D 9 Intersil/Siemens, CA O 5 Muskego Sanitary Landfill, Interin Action OU 1, WI D 6 Tinker AFB (Soldier Creek Bldg. 3001), OK D 7 Hastings GW Contamination (Colorado Ave), NE D 7 Hastings GW Contamination (Far-Mar Co.), NE D 8 Martin Marietta (Denver Aerospace), CO D 8 Chemical Sales Company, OU 1, CO D 9 Watkins-Johnson, CA D 9 Watkins-Johnson, CA D 9 Watkins-Johnson, CA D 10 Linel, Mountain View, CA D 10 Eielson Air Force Base, AK D 10 Eielson Air Force Base, AK D 10 Mesa Area Ground Water Contamination, AZ O Ness AC O Ness Area Ground Water Contamination, AC O National Semiconductor (Monolithic Memories), AC O National Semiconductor (Monolithic Memories | | · · · · · · · · · · · · · · · · · · · | | | | | | 5 Pristine (ROD Amendment), OH 5 Muskego Sanitary Landfill, Interim Action OU 1, WI D 6 Tinker AFB (Soldier Creek Bldg. 3001), OK D 7 Hastings GW Contamination (Colorado Ave), NE D 7 Hastings GW Contamination (Far-Mar Co.), NE D 8 National Semiconductor (Monolithic Memories), CA O 8 Martin Marietta (Denver Aerospace), CO D 9 Teledyne Semiconductors, CA O 9 Watkins-Johnson, CA D 9 Watkins-Johnson, CA D 9 Watkins-Johnson, CA D 9 Van Waters and Rogers, CA O 9 Watkins-Johnson, CA D 9 Fairchild Semiconductor/MTV-I, CA D 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA O 11 Lind, Mountain View, CA D 12 Upjohn Manufacturing Co., PR C D 13 Rocky Mountain Arsenal OU 18, interim response, CO C D 14 Carrier Air Conditioning, TN** D/I D Wausau Groundwater Contamination, MN D/I D 15 Wausau Groundwater Contamination, MN D/I D 16 Musksa Area Ground Water Contamination, AZ O Mesa Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac) O Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac) O Phoenix-Goodyear Airport Area (North & South Fac) O Phoenix-Goodyear Airport Area (North & South Fac) O Phoenix-Goodyear Airport Area (North & South Fa | | | | | | | | Muskego Sanitary Landfill, Interim Action OU 1, WI D 9 Mesa Area Ground Water Contamination, AZ 0 Tinker AFB (Soldier Creek Bldg, 3001), OK D 9 Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac), MI O Phoenix-Goodyear Airport Area (North & South Fac), MI O Spectra Physics, OU 1, CA O Landsung GW Contamination (Colorado Ave), NE D 9 Spectra Physics, OU 1, CA O Lindsay Manufacturing, NE D 9 National Semiconductor (Monolithic Memories), CA O Solvent Service, CA O Martin Marietta (Denver Aerospace), CO D 9 Teledyne Semiconductors, CA O Signetics (Advanced Micro Devices 901), CA O Signetics (Advanced Micro Devices 901), CA O Monolithic Memories/AMD - Arques, Subunit 2, Memories, CA O Monolithic Memories), CA O Monolithic Memories, CA O Monolithic Memories, CA O Monolithic Memories, CA O Monolithic Memories, CA O Minolithic Memories, CA O Monolithic Memories, CA O Minolithic Mino | - 5 | Miami County Incinerator, OH | D | | IBM (San Jose), CA | Ο | | 6 Tinker AFB (Soldier Creek Bldg. 3001), OK 7 Hastings GW Contamination (Colorado Ave), NE D 9 Phoenix-Goodyear Airport Area (North & South Fac), MI O 7 Hastings GW Contamination (Far-Mar Co.), NE D 9 Spectra Physics, OU 1, CA O 1 Lindsay Manufacturing, NE D 9 National Semiconductor (Monolithic Memories), CA O 1 Lindsay Manufacturing, NE D 9 Solvent Service, CA O 1 Lindsay Manufacturing, NE D 9 Solvent Service, CA O 1 Lindsay Manufacturing, NE D 9 Solvent Service, CA O 1 Hastings GW Contamination, VI O 1 Lindsay Manufacturing, NE D 9
National Semiconductor (Monolithic Memories), CA O 0 National Semiconductor, | 5 | | D | | | | | Hastings GW Contamination (Colorado Ave), NE Hastings GW Contamination (Far-Mar Co.), NE D (Colorado Ave), NE D Hastings GW Contamination (Colorado Ave), NE D Hastings GW Contamination (Far-Mar Co.), NE D Hastings GW Contamination (Mn D Hastings GW Contamination (Far-Mar Co.), NE D Hastings GW Contamination (Mn D Hastings GW Contamination (Far-Mar Co.), NE D Hastings GW Contamination (Mn Onlithic Memories), CA Memories (Addentice, CA D Hastings GW Contamination (Mn Onlithic Memories (Addentice, CA D Hastings GW Contamination (Mn Onlithic Memories (Addentice, CA D Hastings GW Contamination (Mn Onlithic Memories (Addentice, CA D Hastings GW Contamination (Mn Onlithic Memories (Addentice, CA D Hastings GW Contamination (Mn Onlithic Memories (A | 5 | Muskego Sanitary Landfill, Interim Action OU 1, WI | D | 9 | Mesa Area Ground Water Contamination, AZ | 0 | | Hastings GW Contamination (Far-Mar Co.), NE D Solvent Service, CA O Hastings GW Contamination (Far-Mar Co.), NE D Solvent Service, CA O Hastin Marietta (Denver Aerospace), CO Chemical Sales Company, OU 1, CA Chemical Sales Company, OU 1, CO Chemical Sales Company, OU 1, CA | 6 | Tinker AFB (Soldier Creek Bldg. 3001), OK | D | 9 | Phoenix-Goodyear Airport Area (North & South Fac), MI | 0 | | Thindsay Manufacturing, NE Martin Marietta (Denver Aerospace), CO Chemical Sales Company, OU 1, CO Martin Marietta (Denver Aerospace), CO Chemical Sales Company, OU 1, CO Martin Marietta (Denver Aerospace), CO Chemical Sales Company, OU 1, CO Martin Marietta (Denver Aerospace), CA O Martin Marietta (Denver Aerospace), CA O Mi Martin Martin Marietta (Denver Beniconductors, CA O Mi Martin Martin Marticat Memories Advanced Micro Devices 901), CA O Martin Martin Martin Mi Martin Martin Mi Martin Martin Memories Advanced Micro Devices 901), CA O Martin Martin Memories Advanced Micro Devices 901), CA O Martin Martin Memories Advanced Micro Devices 901), CA O Martin Martin Memories Advanced Micro Devices 901), CA O Martin Martin Memories Advanced Micro Devices 901), CA O Martin Martin Memories Advanced Micro Devices 901), CA O Martin Martin Memories Advanced Micro Devices 901), CA O Martin Martin Memories Advanced Micro Devices 901), CA O Martin Martin Memories Advanced Micro Devices 901), CA O Martin Martin Memories Advanced Micro Devices 901), CA O Martin Martin Memories Advanced Micro Devices 901), CA O Martin Martin Memories Advanced Micro Devices 901), CA O Martin M | 7 | Hastings GW Contamination (Colorado Ave), NE | D | 9 | Spectra Physics, OU 1, CA | Ο | | 8 Martin Marietta (Denver Aerospace), CO 8 Chemical Sales Company, OU 1, CO 9 Hassayampa Landfill, AZ D 9 Watkins-Johnson, CA D 9 Van Waters and Rogers, CA O 9 Pacific Coast Pipeline, CA D 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA O 9 Intel, Mountain View, CA D 10 Long Prairie Groundwater Contamination, MN D/I Wausau Groundwater Contamination, WI D 1 Teledyne Semiconductors, CA O 9 Signetics (Advanced Micro Devices 901), CA O 9 Watkins-Johnson, | 7 | Hastings GW Contamination (Far-Mar Co.), NE | D | 9 | National Semiconductor (Monolithic Memories), CA | 0 | | 8 Martin Marietta (Denver Aerospace), CO 8 Chemical Sales Company, OU 1, CO 9 Hassayampa Landfill, AZ D 9 Watkins-Johnson, CA 9 Pacific Coast Pipeline, CA 9 Intel, Mountain View, CA 9 Fairchild Semiconductor/MTV-I, CA 9 Raytheon, Mountain View, CA 9 Fairchild Semiconductor/MTV-II, Semiconductor (MTV-II, CA 10 Eielson Air Force Base, AK 10 D 2 FAA Technical Center, NI 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA 11 Commencement Bay/S. Tacoma Channel/Well 12A, WA 12 Upjohn Manufacturing Co., PR 13 C Verona Well Field (Thomas Solvent/Raymond Road), C 14 Carrier Air Conditioning, TN-** 15 Long Prairie Groundwater Contamination, MN 16 Wausau Groundwater Contamination, MN 17 D/I 18 Monolithic Memories/AMD - Arques, Subunit 2, CA 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA 11 Commencement Bay/S. Tacoma Channel/Well 12A, WA 12 Upjohn Manufacturing Co., PR 13 C Verona Well Field (Thomas Solvent/Raymond Road), C 14 Carrier Air Conditioning, TN-** 15 Long Prairie Groundwater Contamination, MN 16 Wausau Groundwater Contamination, MN 17 D/I | 7 | Lindsay Manufacturing, NE | D | - 9 | Solvent Service, CA | Ο | | 9 Hassayampa Landfill, AZ D 9 Watkins-Johnson, CA D 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA O 9 Intel, Mountain View, CA D 10 Long Prairie Groundwater Contamination, WI D 10 Semiconduction, MN D 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA O 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA O 10 Upjohn Manufacturing Co., PR C 10 Upjohn Manufacturing Co., PR C 10 Eielson Air Force Base, AK D 10 Fairchild Semiconductor/MTV-II, CA D 11 Sacramento Army Depot, Tank 2 OU, CA C MI MI Mi Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques, Subunit 2, CA O O Monolithic Memories/AMD - Arques and Road, Subunit 2, CA O O Monolithic Memories/AMD - Arques and Road, Subunit 2, CA O O Monolithic Memories/AMD - Arqu | 8 | Martin Marietta (Denver Aerospace), CO | D | 9 | Teledyne Semiconductors, CA | 0 | | 9 Hassayampa Landfill, AZ D 9 Watkins-Johnson, CA D 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA O 9 Intel, Mountain View, CA D 10 Long Prairie Groundwater Contamination, WI D 10 Semiconduction, MN D 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA O 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA O 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA O 10 Long Prairie Groundwater Contamination, WI D 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA O 110 Commencement Bay/S. Tacoma Channel/Well 12A, WA O 12 Upjohn Manufacturing Co., PR C D 13 Verona Well Field (Thomas Solvent/Raymond Road), C D 14 Hollingsworth Solderless, FL C D 15 Verona Well Field (Thomas Solvent/Raymond Road), C D 10 Eielson Air Force Base, AK D D 10 Fairchild Semiconductor (San Jose), CA C D 11 Sacramento Army Depot, Tank 2 OU, CA C MI MI MI MI MI MI MI MI MI M | 8 | Chemical Sales Company, OU 1, CO | D | 9 | Signetics (Advanced Micro Devices 901), CA | Ο | | 9 Watkins-Johnson, CA 9 Pacific Coast Pipeline, CA 9 Intel, Mountain View, CA 9 Fairchild Semiconductor/MTV-I, CA 9 Raytheon, Mountain View, CA 9 Fairchild Semiconductor/MTV-II, CA 10 Eielson Air Force Base, AK 2 FAA Technical Center, NJ 4 Carrier Air Conditioning, TN** 5 Wausau Groundwater Contamination, MN 5 Wausau Groundwater Contamination, WI D D D S Commencement Bay/S. Tacoma Channel/Well 12A, WA O D 4 Upjohn Manufacturing Co., PR C Upjohn Manufacturing Co., PR C Upjohn Manufacturing Co., PR C Verona Well Field (Thomas Solvent/Raymond Road), C Verona Well Field (Thomas Solvent/Raymond Road), C P Fairchild Semiconductor/MTV-II, CA D S Rocky Mountain Arsenal OU 18, interim response, CO C MI | 9 | Hassayampa Landfill, AZ | D | 9 | Monolithic Memories/AMD - Arques, Subunit 2, CA | Ο | | 9 Pacific Coast Pipeline, CA 9 Intel, Mountain View, CA 9 Fairchild Semiconductor/MTV-I, CA 9 Raytheon, Mountain View, CA 9 Fairchild Semiconductor/MTV-II, CA 9 Raytheon, Mountain View, CA 9 Fairchild Semiconductor/MTV-II, CA 10 Eielson Air Force Base, AK 10 P Fairchild Semiconductor (San Jose), CA 10 Carrier Air Conditioning, TN** 10 D/I 10 Commencement Bay/S. Tacoma Channel/Well 12A, WA 10 C 11 Upjohn Manufacturing Co., PR 11 C 12 Upjohn Manufacturing Co., PR 12 Upjohn Manufacturing Co., PR 13 C 14 Hollingsworth Solderless, FL 14 C 15 Verona Well Field (Thomas Solvent/Raymond Road), C 16 Rocky Mountain Arsenal OU 18, interim response, CO 17 Sacramento Army Depot, Tank 2 OU, CA 2 C 2 FAA Technical Center, NI 3 Sacramento Army Depot, Tank 2 OU, CA 4 Carrier Air Conditioning, TN** 2 D/I 3 MI 4 MI 5 Wausau Groundwater Contamination, MN 2 D/I 5 Wausau Groundwater Contamination, WI | 9 | | D | 9 | | O. | | 9 Intel, Mountain View, CA 9 Fairchild Semiconductor/MTV-I, CA 9 Raytheon, Mountain View, CA 9 Fairchild Semiconductor/MTV-II, CA 10 Eielson Air Force Base, AK 10 Eielson Air Force Base, AK 10 D/I 11 Carrier Air Conditioning, TN** 12 Upjohn Manufacturing Co., PR 13 Hollingsworth Solderless, FL 14 Hollingsworth Solderless, FL 15 Verona Well Field (Thomas Solvent/Raymond Road), 16 Rocky Mountain Arsenal OU 18, interim response, CO 17 Pairchild Semiconductor (San Jose), CA 18 Pairchild Semiconductor (San Jose), CA 19 Sacramento Army Depot, Tank 2 OU, CA 20 CA 21 Carrier Air Conditioning, TN** 22 Upjohn Manufacturing Co., PR 23 Upjohn Manufacturing Co., PR 24 Hollingsworth Solderless, FL 25 Verona Well Field (Thomas Solvent/Raymond Road), 26 C 27 Pairchild Semiconductor (San Jose), CA 28 Pairchild Semiconductor (San Jose), CA 29 Sacramento Army Depot, Tank 2 OU, CA 20 MI 21 MI 22 Upjohn Manufacturing Co., PR 24 Hollingsworth Solderless, FL 26 C 27 PA Tomas Solvent/Raymond Road), 26 C 27 PA Tomas Solvent/Raymond Road), 27 PA Tomas Solvent/Raymond Road), 28 Pairchild Semiconductor (San
Jose), CA 29 Pairchild Semiconductor (San Jose), CA 30 Pairchild Semiconductor (San Jose), CA 31 Pairchild Semiconductor (San Jose), CA 40 Pairchild Semiconductor (San Jose), CA 41 Pairchild Semiconductor (San Jose), CA 42 Pairchild Semiconductor (San Jose), CA 43 Pairchild Semiconductor (San Jose), CA 44 Pairchild Semiconductor (San Jose), CA 45 Pairchild Semiconductor (San Jose), CA 46 Pairchild Semiconductor (San Jose), CA 47 Pairchild Semiconductor (San Jose), CA 48 Pairchild Semiconductor (San Jose), CA 49 Pairchild Semiconductor (San Jose), CA 40 41 Pairchild Semiconductor (San Jose), CA 41 Pairchild Semiconductor (San Jose), CA 42 Pairchild Se | 9 | | D | 10 | Commencement Bay/S. Tacoma Channel/Well 12A, WA | Ο | | 9 Fairchild Semiconductor/MTV-I, CA 9 Raytheon, Mountain View, CA 9 Fairchild Semiconductor/MTV-II, CA 10 Eielson Air Force Base, AK 10 D/I 10 Carrier Air Conditioning, TN** 10 Long Prairie Groundwater Contamination, WI 10 Wausau Groundwater Contamination, WI 11 CA 12 D/I 13 Hollingsworth Solderless, FL 14 Hollingsworth Solderless, FL 15 Verona Well Field (Thomas Solvent/Raymond Road), 15 Verona Well Field (Thomas Solvent/Raymond Road), 16 Verona Well Field (Thomas Solvent/Raymond Road), 17 Verona Well Field (Thomas Solvent/Raymond Road), 18 Rocky Mountain Arsenal OU 18, interim response, CO 19 Fairchild Semiconductor (San Jose), CA 20 FAA Technical Center, NJ 21 Pairchild Semiconductor (San Jose), CA 22 FAA Technical Center, NJ 23 Pairchild Semiconductor (San Jose), CA 24 Carrier Air Conditioning, TN** 25 D/I 26 MI | 9 | | D | 2 | | C | | 9 Raytheon, Mountain View, CA 9 Fairchild Semiconductor/MTV-II, CA 10 Eielson Air Force Base, AK 10 D/I 11 Sacramento Army Depot, Tank 2 OU, CA 12 Carrier Air Conditioning, TN** 13 D/I 14 Carrier Groundwater Contamination, MN 15 Wausau Groundwater Contamination, WI 16 Verona Well Field (Thomas Solvent/Raymond Road), C 18 Rocky Mountain Arsenal OU 18, interim response, CO 19 Fairchild Semiconductor (San Jose), CA 20 Prairie Groundwater Contamination, MN 21 MI 22 MI 23 MI 24 MI 25 Wausau Groundwater Contamination, WI 26 D/I 27 D/I 28 Rocky Mountain Arsenal OU 18, interim response, CO 29 Fairchild Semiconductor (San Jose), CA 20 MI 31 MI 32 MI 33 MI 34 MI 35 MI 36 MI | | | D | | •• | С | | 9 Fairchild Semiconductor/MTV-II, CA 10 Eielson Air Force Base, AK 2 FAA Technical Center, NJ 4 Carrier Air Conditioning, TN** 5 Wausau Groundwater Contamination, WI D B Rocky Mountain Arsenal OU 18, interim response, CO 9 Fairchild Semiconductor (San Jose), CA 9 Sacramento Army Depot, Tank 2 OU, CA C MI MI MI MI MI MI D/I | 9 | | | | | С | | 10 Eielson Air Force Base, AK 2 FAA Technical Center, NJ 4 Carrier Air Conditioning, TN** 5 Long Prairie Groundwater Contamination, WI D/I 5 Wausau Groundwater Contamination, WI D/I C D/I D/I D/I D/I S Fairchild Semiconductor (San Jose), CA C S Sacramento Army Depot, Tank 2 OU, CA MI MI MI D/I | | | | | | | | 2 FAA Technical Center, NJ D/I 9 Sacramento Army Depot, Tank 2 OU, CA C 4 Carrier Air Conditioning, TN** D/I MI 5 Long Prairie Groundwater Contamination, MN D/I 5 Wausau Groundwater Contamination, WI D/I | - | • | | | | | | 4 Carrier Air Conditioning, TN** D/I MI 5 Long Prairie Groundwater Contamination, MN D/I 5 Wausau Groundwater Contamination, WI D/I | | | | | | | | 5 Long Prairie Groundwater Contamination, MN D/I 5 Wausau Groundwater Contamination, WI D/I | | | | | | - | | 5 Wausau Groundwater Contamination, WI D/I | | | | | • | | | | | | | | , who | | | | | | | | | | | REGION | SOIL WASHING | STATUS | REGION | THERMAL DESORPTION (continued) | STATUS | |---------------|---|----------------|----------|---|---------------| | | | | 2 | Industrial Latex, OU 1, NJ | PD | | 2 | Ewan Property, NJ | PD | 3 | Saunders Supply Co, OU 1, VA | PD | | 4 | Benfield Industries, NC | PD | 4 | Ciba-Geigy (MacIntosh Plant) OU 4, AL | PD | | 5 | Moss-American, WI | PD | 4 | Sangamo/Twelve-Mile/Hartwell PCB, OU 1, SC | PD | | 5 | Zanesville Well Field, OH | PD | 4 | Aberdeen Pesticide Dumps, OU 4, NC | PD | | 6 | Koppers/Texarkana, TX | PD | 5 | American Chemical Services, IN | PD | | 9 | FMC (Fresno), CA | PD | 8 | Sand Creek Industrial, OU 5, CO | PD | | 10 | Naval Submarine Base, Bangor Site A, OU 1, WA | PD | 2 | Sarney Farm, NY | D | | 2 | Myers Property, NJ | D | 2 | Fulton Terminals, Soil Treatment, NY | D | | 2 | Vineland Chemical, OU 1 and OU 2, NJ | D | 2 | American Thermostat, NY | D | | 2 | GE Wiring Devices, PR | D | 2 | Claremont Polychemical - Soil Remedy, NY | D | | · 4 | Cabot Carbon/Koppers, FL | D | 4 | Potter's Septic Tank Service Pits, NC | D | | 4 | Whitehouse Waste Oil Pits (amended ROD), FL | D | 4 | Ciba-Geigy Corp. (MacIntosh Plant) OU 2, AL | D | | 5 | United Scrap Lead/SIA, OH | D | 4 | Arlington Blending & Packaging Co., OU 1, TN | D | | 6 | Arkwood, AR | D | 4 | Wamchem, SC | D | | 6 | South Cavalcade Street, TX | D | 5 | Acme Solvent Reclaiming, Inc. OU 2, IL | D | | 9 | Koppers Company, Inc. (Oroville Plant), CA | D | 5 | Carter Industries, MI | D | | 9 | Sacramento Army Depot, Oxidation Lagoons OU, CA | D | 8 | Martin Marietta (Denver Aerospace), CO | D | | 2 | King of Prussia, NJ | D/I | 1 | Union Chemical Co., OU 1, ME | D/I | | 4 | Cape Fear Wood Preserving, NC | D/I | 2 | Lipari Landfill Marsh Sediment, NJ | D/I | | 10 | Gould Battery, OR | 0 | 3 | U.S.A. Letterkenny SE Area, OU1, PA | D/I | | | • • | | 4 | Smith's Farm Brooks, OU 1, KY | D/I | | | | | 1 | Re-Solve, MA | I | | , | | | 2 | Metaltec/Aerosystems, OU 1 - Soil Treatment, NJ | I | | REGION | SOLVENT EXTRACTION | STATUS | 2 | Waldick Aerospace Devices, NJ | 0 | | | | | 5 | Anderson Development (ROD Amendment), MI | 0 | | 2 | Ewan Property, NJ | PD | 1 | Cannon Engineering/Bridgewater, MA | С | | 1 | Norwood PCBs, MA | D | 1 | Ottati & Goss, NH | С | | 1 | O'Connor, ME | \mathbf{D} . | 1 | McKin, ME | С | | 4 | Carolina Transformer, NC | D | 5 | Outboard Marine/Waukegan Harbor, OU 3, IL | . C | | 6 | United Creosoting, TX | D | | • | | | | | | <u> </u> | | | | | | | REGION | OTHER | STATUS | | <u>REGION</u> | THERMAL DESORPTION | STATUS | _ | | | | _ | T T | | 3 | Brown's Battery Breaking Site, OU 2, PA | PD | | 2 | Reich Farms, NJ | PD | 3 | Brown's Battery Breaking Site, OU 2, PA | PD | | 2 | Solvent Savers, NY | PD | 3 | Tonolli Corporation, PA | PD | June 1993 | REGION | OTHER (continued) | <u>STATUS</u> | |--------|--|---------------| | 3 | Brodhead Creek, OU 1, PA | PD | | 6 | Petro-Chemical Systems, Inc., OU 2, TX | PD | | 6 | Prewitt Abandoned Refinery, NM | PD | | 2 | Applied Environmental Services, OU 1, NY | D | | 1 | South Municipal Water Supply Well, NH | I | #### **TABLE 1-4** ### REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR Table 1-4 shows NPL sites at which established treatment technologies have been selected as part of the remedy. Established treatment technologies include: incineration, solidification/stabilization, and others. The sites are ordered by fiscal year to give some initial information on the status of implementation: in general, earlier RODs have progressed furthest in design and construction. | | | On-Site Incineration | | | On- | Site Incineration (continued) | | |------|--------|------------------------------|---------|----------------|--------|---------------------------------|-------| | FY | REGION | SITE NAME | STATE | FY | REGION | SITE NAME | STATE | | 85 | 2 | Bog Creek Farm | NJ | 88 | 5 | Summit National Liquid Disposal | ОН | | 85 | 2 | Bridgeport Rental & Oil | NJ | 88 | 6 | Old Midland Products | AR | | 85 | 5 | ACME Solvent | IL | 88 | 6 | Brio Refining | TX | | 85 | 6 | MOTCO | TX | 88 | 7 | Times Beach | MO | | | **** | | | 88 | 8 | Broderick Wood Products | CO | | 86 | 1 | Baird & McGuire | MA | | | | | | 86 | 4 | Mowbray Engineering | AL | 89 | 1 | Baird and McGuire | MA | | 86 | 5 | LaSalle Electrical Utilities | IL | 89 | 1 | Wells G&H | MA | | 86 | 5 | Arrowhead Refinery | MN | 89 | 2 | Bog Creek Farm | NJ | | 86 | 5 | Fields Brook | OH | 89 | 2 | De Rewal Chemical* | NJ | | 86 | 6 | Sikes Disposal Pit | TX | 89 | 3 | Douglasville Disposal | PA | | | | * | | 89 | 4 | Smith's Farm Brooks* | KY | | | | | | 89 | 4 | Aberdeen Pesticide Dumps/ | NC | | 87 | 1 | Ottati & Goss | NH | U) | • | Fairway | n.c | | 87 | 1 | Davis Liquid Waste | RI | 89 | 4 | Celanese* | NC | | 87 | 4 | Tower Chemical | FL | 89 | 4 | American Creosote Works | TN | | 87 | 4 | Geiger/C&M Oil | SC | 89 | 5 | Ninth Avenue Dump | IN | | 87 | 5 | Rose Township Dump | MI | 89 | 5 | New Brighton/Arden Hills | MN | | 87 | 5 | Laskin/Poplar Oil | OH | 89 | 5 | Big D Campground | OH | | 87 | 6 | Bayou Bonfouca | LA | 89 | 5 | Laskin/Poplar Oil | OH | | 87 | 6 | Cleve Reber | LA | | | | | | | -%· | | <u></u> | 90 | 1 | New Bedford* | MA | | 88 | 1 | Rose Disposal Pit | MA | 90 | 2 | Sarney Farm | NY | | 88 | 2 | Lipari Landfill | NJ | 90 | 3 | M.W. Manufacturing* | PA | | . 88 | 2 | Love Canal | NY | 90 | 5 | Sangamo/Crab Orchard* | IL | | 88 | 3 | Delaware Sand & Gravel | DE | | | National Wildlife Refuge | | | 88 | 3 | Southern Maryland Wood | MD | 90 | 5 | Fisher Calo | IN | | | | Treating | | 90 | 5 | Bofors Nobel | MI | | 88 | 3 | Drake Chemical/Phase III | PA | 90 | 5 | Springfield Township Dump* | MI | | 88 | 3 | Ordnance Works Disposal | wv | 90 | 5 | Pristine (Amendment) | ОН | | 88 | 4 | Zellwood Groundwater | FL | 90 | 5 | University of Minnesota | MN | | 88 | 5 | LaSalle Electrical Utilities | IL. | 90 | 6 | Vertac | AR | | 88 | 5 | Fort Wayne Reduction | IN | 90 | 6 | Texarkana Wood Preserving | TX | | 88 | 5 | Forest Waste Products | MI | 90 | 7 | Missouri Electric Works | MO | | 88 | 5 | Pristine | ОН | - - | - | | | ^{*} Residuals to be treated with soldification/stabilization. #### On-Site Incineration (continued)
Off-Site Incineration (continued) | | | | | | | • | | |------|------------|------------------------------------|--------|-------------|--------|------------------------------------|---| | FY | REGION | SITE NAME | STATE | FY | REGION | SITE NAME S | ï | | 0 | . 7 | Hastings Groundwater | NE | 86 | 3 | Westline | | | • | • | Contamination (East Industrial | | 86 | 5 | Metamora Landfill | | | | | Park) | | 86 | 5 | Spiegelberg Landfill | | | 90 | 10 | FMC Yakima Pit | WA | 86 | 7 | Ellisville Area/Bliss | | | 91 | 3 | Whitmoyer Labs, Inc. OU3 | PA | | 2 | Williams Property | | | 91 | 3 | Eastern Diversified Metals | PA | 87 | 4 | Sodyeco | | | 91 ' | 4 | Ciba Geigy Corp. | AL | 87 | 6 | Sand Springs Petrochemical | | | 91 | 5 | Allied Chem & Ironton Coke | ОН | | _ | Complex | | | 92 | 4 | Alabama Army Ammunition Plant | AL | 88 | 1 | Cannon Engineering/Plymouth | | | | | (Operable Unit 1) | | 88 | 2 | Ewan Property | | | 92 | 5 | Savanna Army Depot | 肛 | 88 | 2 | Reich Farms | | | 92 | 6 | Gulf Coast Vacuum Services | LA | 88 | 2 | Brewster Well Field | | | | | (Operable Unit 1) | | 88 | 3 | Wildcat Landfill | | | | | • • | | 88 | 3 | Berks Sand Pit | | | | | | | 88 | 3 | Douglassville Disposal | | | | | Off Site Incineration | | 88 | 3 | Fike Chemical | | | FY | REGION | SITE NAME | STATE | 88 | 5 | Belvidere Municipal
Landfill #1 | | | | , KEGION | OHD IVANAD | 211112 | 88 | 6 | S. Calvacade St. | | | 84 | 5 | Berlin & Farro Liquid Incineration | MI | 88 | 7 | Minker/Stout/Romaine Creek (R&S) | | | 84 | 5 | Laskin/Poplar Oil | он | 88 | 7 | Syntex | | | 84 | 10 | Western Processing Phase I | WA | | | | | | | | | | 89 | 1 | W.R. Grace (Acton Plant) | | | | | | | 89 | 1 | O'Connor | | | 85 | 2 | Swope Oil & Chemical | NJ | 89 | 1 | Pinette's Salvage Yard | | | 85 | 5 | Byron/Johnson Salvage | IL | . 89 | 2 | Claremont Polychemical | | | | | Yard | | 89 | 3 | M.W. Manufacturing | | | 85 | 6 | Triangle Chemical | TX | 89 | 3 | Whitmoyer Laboratories | | | 85 | 8 | Woodbury Chemical | co | 89 | 4 | Newsom Brothers Old Reichold | | | 86 | 3 | Drake Chemical/Phase II | PA | 89 | 5 | Cross Brothers Pail | | | • | • | | | 89 | 5 | Outboard Marine/Waukegan Harbon | r | ^{*} Residuals to be treated with soldification/stabilization. ### REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR #### Off-Site Incineration (continued) #### Off-Site Incineration (continued) | FY | REGION | SITE NAME | STATE | FY | REGION | SITE NAME | STATE | |------|--------|------------------------------------|-------|----|--------|---|-----------| | 89 | 5 | Wedzeb | IN | 91 | 4 | Aberdeen Pesticide Dumps | | | 89 | 5 | Cliff/Dow Dump | MI | | • | (Amendment) | NC | | 89 | 5 | Alsco Anaconda | OH | 91 | 4 | Wrigley Charcoal | TN | | 89 | 6 | United Creosoting | TX | 91 | 5 | Acme Solvent Reclaiming Inc. | IL | | 89 | 8 | Woodbury Chemical | CO | 91 | 5 | Main Street Wellfield | IN | | | | • | | 91 | 5 | Thermo Chem | MI | | | | | | 91 | 5 | Carter Industries | MI | | 90 | 1 | Beacon Heights Landfill | CT | 91 | 5 | Summit National Liquid Disposal | 1417 | | 90 | 1 | Kearsarge Metallurgical | NH | | J | Service (Amendment) | ОН | | 90 | 2 | FAA Technical Center | NJ | 91 | 6 | Petrochemical (Turtle-Bayou) | TX | | 90 | 2 | Hooker Chemical-Ruco Polymer | NJ | 91 | 7 | Peoples Natural Gas | IA | | 90 | 2 | Sayreville landfill | NJ | 91 | 7 | Ellisville Area Site | MO | | 90 | 2 | Mattiace Petrochemicals | NY | 91 | 7 | Ellisville Area (Amendment) | MO | | 90 | 2 | Sealand Restoration | NY | 91 | 7 | Kem-Pest Laboratories | MO | | . 90 | 3 | Greenwood Chemical* | VA | 91 | 8 | Broderick Wood Products | CO | | 90 | 6 | Arkwood | AR | 91 | 8 | Hill AFB | UT | | 90 | 6 | Jacksonville Municipal Landfill | AR | 91 | 9 | Advanced Micro Devices Inc. | CA | | 90 | 6 | Rogers Road Municipal Landfill | AR | 91 | 10 | Commencement Bay - Nearshore/ | | | 90 | 6 | Hardage/Criner (Amendment) | OK | , | | Tideflats | WA | | 90 | 7 | Fairfield Coal Gasification Plant | IA | 91 | 10 | Northwest Transformer - Mission
Pole | WA | | 90 | 7 | Shenandoah Stables | MO | | | | | | 90 | 8 | Martin Marietta (Denver Aerospace) | CO | | | | | | 90 | 8 | Sand Creek Industrial | CO | 92 | 2 | Ellis Property | NJ | | 90 | 8 | Ogden Defense Depot | UT | 92 | 3 | Fike Chemical | wv | | | | <u> </u> | | 92 | 5 | American Chemical Services | IN | | 91 | 1 | Union Chemical | ME | 92 | 8 | Ogden Defense Depot (Operable Unit 3) | UT | | 91 | 2 | Curcio Scrap Metal | NJ | 92 | 9 | Westinghouse Electric (Sunnyvale | CA | | 91 | 2 | Swope Oil | NJ | 72 | | Plant) | CA | | 91 | 2 | Waldick Aerospace Devices, Inc. | NJ | 92 | 10 | Pacific Hide & Fur Recycling | ID | | 91 | 2 | Circuitron | NY | 1 | | (Amendment) | 11 | | 91 | 2 | Mattiace Petrochemical | NY | 92 | 10 | U.S. DOE Idaho National | ID | | 91 | 3 | Brodhead Creek | PA | 1 | 10 | Engineering Lab (Operable Unit 23 | | | 91 | 3 | Eastern Diversified Metals | PA | | | Luginooring two (operation Offit 25 | • • | | 91 | 3 | Dixie Cavern County Landfill | VA | | | | | ^{*} Residuals to be treated with soldification/stabilization. ### Solidification/Stabilization ### Solidification/Stabilization (continued) | FY | REGION | SITE NAME | STATE | FY | REGION | SITE NAME | STATE | |----------|--------------|---------------------------------|----------|----|--------|------------------------------|-------| | FI | REGION | SITE NAME | | | | | | | 82 | . 3 | Bruin Lagoon | PA | 88 | 2 | Love Canal | NY | | | - | | | 88 | 2 | Marathon Battery | NY | | | | | | 88 | 2 | York Oil | NY | | 84 | 6 | Bioecology Systems | TX | 88 | 3 | Alladin Plating | PA | | • • | • | | | 88 | 3 | Fike Chemical | WV | | | | | | 88 | 4 | Brown Wood Preserving | FL | | 85 | 4 | General Refining | GA | 88 | 4 | Flowood | MS | | 85 | 4 | Davie Landfill | FL | 88 | 4 | Chemtronics | NC | | 85 | 10 | Western Processing/Phase II | WA | 88 | 5 | Velsicol Chemical | IL | | 05 | 10 | | | 88 | 5 | Mid-State Disposal Landfill | WI | | | | | | 88 | 6 | Industrial Waste Control | AR | | 86 | 2 | Marathon Battery | NY | 88 | 6 | Bailey Waste Disposal | TX | | 86 | 3 | Bruin Lagoon | PA | 88 | 6 | Brio Refining | TX | | 86 | 4 | Pepper's Steel & Alloy | FL | 88 | 6 | French Limited | TX | | 86 | 4 | Sapp Battery Salvage | FL | 88 | 7 | Midwest Manufacturing/ | IA | | 86 | 5 | Burrows Sanitation | MI | | | North Farm | | | 86 | 5 | Forest Waste Products | MI | 88 | 9 | Selma Pressure Treating | CA | | 60 | 3 | Totost Waste Troducts | | 88 | 10 | Pacific Hide & Fur Recycling | ID | | | | | | 88 | 10 | Gould | OR | | 87 | 1 | Davis Liquid Waste | RI | 88 | 10 | Commencement Bay/NTF | WA | | 87
87 | 2 | Chemical Control | ŊĴ | 88 | 10 | Frontier Hard Chrome | WA | | 87 | 2 | Myers Property | NJ | | | | | | 87 | 2 | Waldick Aerospace | NJ | | | | | | 87
87 | 4 | Gold Coast | FL | 89 | 1 | Sullivan's Ledge | MA | | 87 | 4 | Geiger/C&M Oil | SC | 89 | 1 | W.R. Grace (Acton Plant) | MA | | 87
87 | 4 | Independent Nail | SC | 89 | 1 | O'Connor | ME | | 87
87 | 4 | Palmetto Wood Preserving | SC | 89 | 2 | DeRewal Chemical | NJ | | 87
87 | 5 | Liquid Disposal | MI | 89 | 2 | Marathon Battery | NY | | | 5 | Northern Engraving | WI | 89 | 3 | Craig Farm | PA. | | 87 | | Gurley Pit | AR | 89 | 3 | Douglassville Disposal | PA | | 87 | 6
6 | Mid-South Wood | AR | 89 | 3 | Hebelka Auto Salvage Yard | PA | | 87
87 | 6 | Cieve Reber | LA
LA | 89 | 3 | Ordnance Works Disposal | wv | | 87 | • | | OK | 89 | 4 | Kassouf-Kimerling Battery | FL | | 87 | 6 | Sand Spring Petrochemical | OK | 89 | 4 | Smith Farm Brooks | KY | | | | Complex | | 89 | 4 | Cape Fear Wood Preserving | NC | | | | | | 89 | 4 | Celanese | NC | | 88 | 1 | Charles George Land Reclamation | MA | 89 | 4 | Amnicola Dump | TN | ### Solidification/Stabilization (continued) ### Solidification/Stabilization (continued) | | | | | | | Sassan Continue (O) | | |----|--------|------------------------------------|----------|------------|--------|---------------------------------|--------| | FY | REGION | SITE NAME | STATE | FY | REGION | SITE NAME | STATE | | 89 | 5 | MIDCO I | IN | 90 | 8 | Rocky Mountain Arsenal (OU 17) | СО | | 89 | 5 | MIDCO II | IN | 90 | 9 | J.H. Baxter | CA | | 89 | 5 | Auto Ion Chemicals | MI | 90 | 10 | Teledyne Wah Chang Albany (TW | | | 89 | 6 | Pesses Chemical | TX | | | 2 (2 | 0.1,01 | | 89 | 6 | Sheridan Disposal Services | TX | | | | | | 89 | 7 | Vogel Paint & Wax | IA | 91 | 1 | Silresin Chemical | MA | | 89 | 9 | Koppers (Oroville Plant) | CA | 91 | 1 | Sullivan's Ledge | MA | | 89 | 9 | Purity Oil Sales | CA | 91 | 1 | Union Chemical | MA | | | | | | 91 | 2 | Asbestos Dump | NJ | | | | | | 91 | 2 | Nascolite Corp. | NJ | | 90 | 1 | New Bedford | MA | 91 | 2 | NL Industries | NJ | | 90 | 2 | Roebling Steel | NJ | 91 | 2 | Roebling Steel | NJ | | 90 | 3 | M.W. Manufacturing | PA | 91 | 2 | Waldick Aerospace Services Inc. | NJ | | 90 | 3 | C&R Battery | VA | 91 | 2 | White Chemical Corp. | NJ | | 90 | 3 | Greenwood Chemical | VA | 91 | 3 | Halby Chemical | DE | | 90 | 4 | 62nd Street Dump | FL | 91 | 3 | Mid-Atlantic Wood Preservers | MI | | 90 | 4 | Cabot/Koppers | FL | 91 | 3 | Eastern Diversified Metals | PA | | 90 | 4 | Coleman-Evans Wood Preserving | FL | 91 | 3 | Hebelka Auto Salvage Yard | PA | | | | (Amendment) | | 91 | 3 | Whitmoyer Lab (OU3) | PA | | 90 | 4 | Kassourf-Kimerling Battery | FL | 91 - | 3 | Whitmoyer Lab (OU2) | PA | | | | Disposal | | 91 | 3 | U.S.A. Letterkenny SE | PA | | 90 | 4 | Schuylkill Metal | FL | 91 | 3 | First Piedmont Quarry 719 | VA | | 90 | 4 | Yellow Wate Road | FL | 91 | 3 | Saunders Supply | VA | | 90 | 4 | Zellwood Groundwater | FL | 91 | 4 | Interstate Lead Co. | AL | | | | Contamination (Amendment) | | 91 | 4 | USAF Robins Air Force Base | GA | | 90 | 5 | Sangamo/Crab Orchard | 正 | 91 | 4 | Maxey Flats Nuclear Disposal | KY | | | | National
Wildlife Refuge | | 91 | 4 | Golden Strip Septic Tank | SC | | 90 | 5 | Wayne Waste Oil | IN | 91 | 4 | Aberdeen Pesticide Dump | NC | | 90 | 5 | Springfield Township Dump | MI | | - | (Amendment) | 110 | | ,0 | 5 | Oconomowoc Electroplating | WI | 91 | 4 | Carolina Transformer | NC | | 0 | 6 | Jacksonville Municipal Landfill | AR | 91 | 4 | Arlington Blending and | TN | | 0 | 6 | Rogers Road Municipal Landfill | AR | - - | • | Packaging Co. | 114 | | 0 | 7 | Shenandoah Stables | МО | 91 | 4 | Oak Ridge OU3 | TN | | 0 | 7 | Hastings Groundwater Contamination | n NE | 91 | 4 | Wrigley Charcoal | TN | | | | (East Industrial Park) | | 91 | 5 | Acme Solvents | IL | | 90 | 8 | Martin Marietta (Denver | · co | 91 | 5 | Carter Industries | MI | | | | Aerospace) | | 91 | 6 | Cimarron Mining Corp. | NM | ### Solidification/Stabilization (continued) #### Solidification/Stabilization (continued) | FY | REGION | SITE NAME | STATE | F | Y RE | EGION SITE | NAME | S | STATE | |----|--------|----------------------------------|-------|-----|--------|----------------------------|--------------|-----------|-----------| | 91 | 7 | IE Dupont de Nemours & Co., Inc. | . IA | 9 | 2 | 6 Gulf Coast V | acuum Servi | ces . | LA | | 91 | 7 | Mid-America Tanning | IA | | | (Operable Un | it 1) | | | | 91 | 7 | Shaw Avenue Dump | IA | 9 | | 6 Oklahoma Re | fining | | OK | | 91 | 8 | Anaconda Co. Smelter | MT | 9 | | 8 Broderick Wo | | | CO | | 91 | 9 | FMC (Fresno Plant) | CA | 9 | | 8 Denver Radiu | m (Operable | Unit 8) | CO | | 91 | 9 | Valley Wood Preserving | CA | 9 | | 8 Portland Cem | | | 3) UT | | | | | | 9 | 2 | 8 Rocky Flats (
Unit 4) | USDOE) (O | perable | СО | | 92 | 1 | PSC Resources | MA | 9 | 2 | 8 Silver Bow C | reekButte Ar | rea | MT | | 92 | 2 | Cosden Chemical Coatings | NJ | 9 | 2 . | 9 Rhone-Pouler | ıc/Zoecon | | CA | | 92 | 2 | Facet Enterprises | NY | 9 | 2 | 10 Bunker Hill N | lining and | | ID | | 92 | 2 | Preferred Plating | NY | | | Metallurgical | Complex | | | | 92 | 3 | Abex | VA | 9 | 2 | 10 Pacific Hide | & Fur Recyc | ling | ID | | 92 | 3 | C & D Recycling | PA | | | (Amendment) | ı | | | | 92 | 3 | Fike Chemical | WV | . 9 | 2 | 10 U.S. DOE Id | aho National | l . | ID | | 92 | 3 | Paoli Rail Yard | PA | | | Engineering I | ab (Operabl | e Unit 22 |) | | 92 | 3 | Rhinehart Tire Fire Dump | VA | | | | | | | | 92 | 3 | Tonolli | PA | | | | | | | | 92 | 4 | Agrico Chemical | FL | | | | | | | | 92 | 4 | Ciba-Geigy (McIntosh Plant) | AL | | | <u>Other</u> | | | | | 92 | 4 | Florida Steel | FL | | | | | | | | 92 | 4 | JFD Electronics/Channel Masters | NC | FY | REGION | SITE NAME | STATE | TECH | NOLOGY | | 92 | 4 | Marine Corps Logistics Base | GA | | | | | | | | 92 | 4 | Savannah River (USDOE) | SC | 85 | | Triangle Chemical | TX | | eration | | | | (Operable Unit 1) | | 87 | 3 | West Virginia Ordnance | ·WV | | Flamming | | 92 | 4 | Whitehouse Waste Oil Pits | FL | 88 | 3 | Bendix Flight System | PA | Soil A | eration | | | | (Amendment) | | 88 | 7 | Arkansas City Dump | KS | Chemi | ical | | 92 | 5 | Electrovoice | MI | 89 | 9 | Intel, Mountain View | CA | Soil A | eration | | 92 | 5 | H. Brown Company | MI | 89 | 9 | Raytheon, Mountain View | | Soil A | eration | | 92 | 5 | Peerless Plating | MI | 90 | • | Howe Valley Landfill | KY | Soil A | eration | | 92 | 5 | Savanna Army Depot | IL | 92 | 3 | Fike Chemical | wv | Neutra | alization | | 92 | 5 | Spickler Landfill | WI | 92 | | Double Eagle Refinery | OK | | alization | | 92 | 5 | Tar Lake | MI | 92 | 6 | Fourth Street Abandoned | OK | Neutra | alization | | 92 | 6 | Cal West Metals | NM | 1 | | Refinery | | | | | 92 | 6 | Double Eagle Refinery | OK | 92 | 6 | Oklahoma Refining | OK | Neutra | alization | | 92 | 6 | Fourth Street Abandoned Refinery | OK | | | | | | | THIS PAGE INTENTIONALLY LEFT BLANK #### **TABLE 1-5** #### REMEDIAL ACTIONS: TREATMENT TRAINS WITH INNOVATIVE TREATMENT TECHNOLOGIES Table 1-5 lists the sites at which innovative treatment technologies are used together with established or other innovative treatment technologies in treatment "trains." Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. | Soil Washing | Myers Property | NJ | |---|--|--| | Ex Situ Bioremediation Foll | owed by | | | Solidification/Stabilization | Whitmoyer Laboratories, OU 3 | PA | | Solidification/Stabilization | J. H. Baxter | CA | | Solidification/Stabilization | Cape Fear Wood Preserving | NC | | In Situ Flushing Followed b | <u>Y</u> | | | In Situ Bioremediation | LA Clarke & Sons | VA | | In Situ Bioremediation | Pester Burn Pond | KS | | Soil Vapor Extraction Follo | wed by | | | | | | | In Situ Bioremediation | Swope Oil & Chemical Co. | NJ | | In Situ Flushing | JADCO - Hughes | NC | | In Situ Flushing
In Situ Flushing | JADCO - Hughes Pasley Solvents and Chemicals, Inc. | NC
NY | | In Situ Flushing In Situ Flushing Solidification/Stabilization | JADCO - Hughes Pasley Solvents and Chemicals, Inc. Genzale Plating Company, OU 1 | NC
NY
NY | | In Situ Bioremediation In Situ Flushing In Situ Flushing Solidification/Stabilization Soil Washing | JADCO - Hughes Pasley Solvents and Chemicals, Inc. | NC
NY
NY | | In Situ Flushing In Situ Flushing Solidification/Stabilization | JADCO - Hughes Pasley Solvents and Chemicals, Inc. Genzale Plating Company, OU 1 | NC
NY
NY | | In Situ Flushing In Situ Flushing Solidification/Stabilization Soil Washing Soil Washing Followed by Bioremediation | JADCO - Hughes Pasley Solvents and Chemicals, Inc. Genzale Plating Company, OU 1 Zanesville Well Field American Creosote | NC
NY
NY
OH | | In Situ Flushing In Situ Flushing Solidification/Stabilization Soil Washing Soil Washing Followed by Bioremediation Bioremediation | JADCO - Hughes Pasley Solvents and Chemicals, Inc. Genzale Plating Company, OU 1 Zanesville Well Field American Creosote Cabot Carbon/Koppers | NC
NY
NY
OH | | In Situ Flushing In Situ Flushing Solidification/Stabilization Soil Washing Soil Washing Followed by Bioremediation Bioremediation Bioremediation | JADCO - Hughes Pasley Solvents and Chemicals, Inc. Genzale Plating Company, OU 1 Zanesville Well Field American Creosote Cabot Carbon/Koppers Whitehouse Waste Oil Pits | NC
NY
NY
OH
FL
FL | | In Situ Flushing In Situ Flushing Solidification/Stabilization Soil Washing Soil Washing Followed by Bioremediation Bioremediation Bioremediation Bioremediation Bioremediation | JADCO - Hughes Pasley Solvents and Chemicals, Inc. Genzale Plating Company, OU 1 Zanesville Well Field American Creosote Cabot Carbon/Koppers Whitehouse Waste Oil Pits Benfield Industries | NC
NY
NY
OH
FL
FL
NC | | In Situ Flushing In Situ Flushing Solidification/Stabilization Soil Washing Soil Washing Followed by Bioremediation Bioremediation Bioremediation Bioremediation Bioremediation Bioremediation Bioremediation Bioremediation | JADCO - Hughes Pasley Solvents and Chemicals, Inc. Genzale Plating Company, OU 1 Zanesville Well Field American Creosote Cabot Carbon/Koppers Whitehouse Waste Oil Pits Benfield Industries Cape Fear Wood Preserving | NC
NY
NY
OH
FL
FL
NC
NC | | In Situ Flushing In Situ Flushing Solidification/Stabilization Soil Washing Soil Washing Followed by Bioremediation Bioremediation Bioremediation | JADCO - Hughes Pasley Solvents and Chemicals, Inc. Genzale Plating Company, OU 1 Zanesville Well Field American Creosote Cabot Carbon/Koppers Whitehouse Waste Oil Pits Benfield Industries | NC
NY
NY
OH
FL
FL
NC | #### Soil Washing Followed by (continued) | Incineration
Incineration
Incineration
Solidification/Stabilization | Arkwood
South Cavalcade Street
Sand Creek, OU 5
FMC (Fresno) | AR
TX
CO
CA | |---|---|--| | Solvent Extraction Followed b | Y | | | Incineration | United Cresoting | TX | | Soil Washing | Ewan Property | NJ | | Solidification/Stabilization | O'Connor | ME | | Thermal Desorption Followed | . | | | Thermal Desorption Followed Dechlorination Dechlorination | Resolve | MA
TN | | Dechlorination | Resolve Arlington Blending & Packaging | | | Dechlorination | Resolve | | | Dechlorination Dechlorination Dechlorination | Resolve Arlington Blending & Packaging Co., OU 1 | TN | | Dechlorination Dechlorination Dechlorination Incineration of Organic Vapors | Resolve Arlington Blending & Packaging Co., OU 1 Smith's Farm Brooks, OU 1 | TN | | Dechlorination Dechlorination Dechlorination Incineration of Organic Vapors Incineration of Organic Vapors | Resolve Arlington Blending & Packaging Co., OU 1 Smith's Farm Brooks, OU 1 Sarney Farm | TN
KY
NY | | Dechlorination
Dechlorination | Resolve
Arlington Blending & Packaging Co., OU 1 Smith's Farm Brooks, OU 1 Sarney Farm Outboard Marine/Waukegan Harbor | KY
NY
IL
MI | | Dechlorination Dechlorination Dechlorination Incineration of Organic Vapors | Resolve Arlington Blending & Packaging Co., OU 1 Smith's Farm Brooks, OU 1 Sarney Farm Outboard Marine/Waukegan Harbor Carter Industries | KY
NY
IL
MI
MN
CO | | Dechlorination Dechlorination Dechlorination Incineration of Organic Vapors Solidification/Stabilization | Resolve Arlington Blending & Packaging Co., OU 1 Smith's Farm Brooks, OU 1 Sarney Farm Outboard Marine/Waukegan Harbor Carter Industries University of Minnesota Martin Marietta (Denver Aerospace) Waldick Aerospace Devices | KY
NY
IL
MI
MN
CO
NJ | | Dechlorination Dechlorination Dechlorination Incineration of Organic Vapors Solidification/Stabilization Solidification/Stabilization | Resolve Arlington Blending & Packaging Co., OU 1 Smith's Farm Brooks, OU 1 Sarney Farm Outboard Marine/Waukegan Harbor Carter Industries University of Minnesota Martin Marietta (Denver Aerospace) Waldick Aerospace Devices USA Letterkenny (SE Area, OU 1) | KY
NY
IL
MI
MN
CO
NJ
PA | | Dechlorination Dechlorination Dechlorination Incineration of Organic Vapors Solidification/Stabilization Solidification/Stabilization | Resolve Arlington Blending & Packaging Co., OU 1 Smith's Farm Brooks, OU 1 Sarney Farm Outboard Marine/Waukegan Harbor Carter Industries University of Minnesota Martin Marietta (Denver Aerospace) Waldick Aerospace Devices USA Letterkenny (SE Area, OU 1) Acme Solvent Reclaiming, Inc., OU 2 | KY
NY
IL
MI
MN
CO
NJ
PA
IL | | Dechlorination Dechlorination Dechlorination Incineration of Organic Vapors Solidification/Stabilization Solidification/Stabilization | Resolve Arlington Blending & Packaging Co., OU 1 Smith's Farm Brooks, OU 1 Sarney Farm Outboard Marine/Waukegan Harbor Carter Industries University of Minnesota Martin Marietta (Denver Aerospace) Waldick Aerospace Devices USA Letterkenny (SE Area, OU 1) | KY NY IL MI MN CO NJ PA | #### **TABLE 1-6** #### REMEDIAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS Table 1-6 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at remedial sites. It is intended to supplement, not replace, the information included in tables 1-1, 1-2, and 1-3. | Region | Site Hame, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Haterials
Handling
Required | Residuals
Hanagement | Comments | |--------|--|--|---|---|--|---|--|--| | 1 | Cannon Engineering/HA
5/90 to 10/90 | Thermal soil
aeration/
Canonie
Environmental
Services Corp.,
Porter, IN | Soil (11,300
tons) | Criteria: 0.1 ppm - TCE, DCE, PCE 0.2 ppm - Toluene, Xylene 0.5 ppm - Vinyl chloride SVOCs - 3ppm (total) Input 500 - 3,000 ppm (Total VOCs) Output - <0.025 ppm (Total VOCs) | Continuous operation 40 tons/hr 450 - 500° F Moisture content before treatment - 5% - 25% moisture Additives - dry soil (to reduce moisture content) | Excavation
Screening
Hixing
Dewatering | Residuals from air pollution control - treated on site, disposed of off site Wastewater - treated on site, disposed of off site | The waste feed size limitation for the equipment, 1.875 inches, was an important consideration. More information is available in the RA report available from Region 1. | | 1 | McKin, ME
7/86 to 2/87 | Thermal desorption/ Canonie Env. Services Corp., Porter, IN | Soil
(11,500 cy to a
depth of 10 ft.) | VOCs Criteria: 0.1 ppm TCE Input: up to 1,000 ppm TCE Output: 0.1 ppm | Continuous operation 6-8 minutes retention time 300°F | Excavation | Soils -
Solidified and
disposed onsite
Vapors -
Air carbon
capture | | | 1 | Ottati & Goss, NH
6/89 to 9/89 | Thermal desorption/ Canonie Engineering | Soil (6,000 cy) | TCE, PCE, DCA, Benzene Criteria: 1 ppm - Total VOCs and <100 ppb - Each individual VOC Output: <1ppm - Total VOCs | Batch process | Excavation
Screening | Carbon from air
pollution
control unit
regenerated
offsite | For more information
on this project, see
the close out report
available from Region
1. | | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|---|---|--|---|------------------------------------|---|--| | 2 | Wide Beach Development,
NY
9/90 to 9/91 | APEG
dechlorination/
Soil Tech
Denver, CO | Soil (40,000 cy) | Criteria: PCB - <10 ppm (1 composite sample/day) Input - 10 to 100 ppm PCB Output - 2 ppm PCB | Continuous process 8 tons/hour 200° - 580°C (450° - 1100°F) Ambient pH and moisture Additives - Alkaline polyethylene glycol (APEG) | Excavation
Screening
Staging | Treated soil -
disposed of on
site | If on-site disposal is planned, perform tests of the treated material appropriate to intended use. For further information on this dechlorination project, see the Demonstration Test Report produced by Region 2, EPA. | | 2 | Upjohn Manufacturing
Company, PR
1/83 to 3/88 | Soil Vapor
Extraction
Terra Vac, Inc.
Costa Mesa, CA | Soil (16,000 sq
ft to
approximately
100 ft deep) | Criteria: Initially: Undefined, end point of treatment was subject to long debate. Final criteria: Carbon tetrachloride (in exhaust stacks) - nondetectable for three consecutive months Initial concentrations - 70 ppm (carbon tetrachloride to air) Final concentrations - nondetect (<0.002 ppm) | Ambient conditions | | Discharge of
soil vapors
through 30-ft
stack | For further information on this application, see the Applications Analysis Report for the Terra Vac In situ Vacuum Extraction System (EPA/540/A5-89/003). | | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Hedia Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Haterials
Handling
Required | Residuals
Hanagement | Comments | |--------|--|--|-------------------------------------|--|---|--|---|---| | 4 | Brown Wood Preserving,
FL
10/88 to 12/91 | Land treatment/
Remediation
Technologies,
Seattle,
Washington | Soil/pond
sediment (7,500
cy) | Criteria: 100 ppm total carcinogenic PAHs as sampled on 8 subplots on each lift Input - 800 to 2,000 ppm total creosote contaminants Output - 10 to 80 ppm total carcinogenic indicators | Retention time - 3
to 6 months Additives - water
and nutrients | Excavation
Screening
Tilling | Treated
material
vegetated with
grass (no cap) | Further information on this project is available from the Remedial Action Close Out Report. The vendor, RETEC, is expected to prepare a paper. | | 4 | Palmetto Wood
Preserving, SC
9/28/88 to 2/8/89 | Chemical treatment and soil washing Reduction of hexavalent
chromium to trivalent chromium En-site (ERCS contractor) Atlanta, GA | Soil (13,000 cy) | Health-based criteria - Actual concentrations unknown Input: Arsenic - 2 to 6,200 ppm Chromium - 4 to 6,200 ppm Output: Arsenic - less than 1 ppm Chromium - 627 ppm | Soil - Batch process Treatment for aqueous waste from soil washing - 25 gallons per minute pH - 2 to 9 | Neutralization
Mixing
Dewatering | Soil - solidified and replaced on site Wastewater - permitted discharge to the sewer line Sludges - off site disposal | (1) Used sodium metaphosphate to lower pH to 2.0 and wash the Chromium from the soil, (2) separated the soil and solution, (3) solidified the soils, and (4) used the ferrous ion method of reduction to precipitate the chromium from solution in trivalent form. This treatment system is unique in the method of generating ferrous ion for the reducing step. The waste stream passed through an electrolytic cell containing consumable steel electrodes where the ferrous ions were electrically introduced into the waste stream. | | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|--|--|---|---|------------------------------------|---|--| | 4 # | Hollingsworth
Solderless, FL
1/91 to 7/91 | Soil vapor
extraction
EBASCO | Soil 60 cy (down
to 7 feet deep) | TCE, vinyl chloride Target: total VOCs 1 ppm | In situ | None required | Air emissions
vented to
atmosphere | Design specifications
were very critical.
Need to pay close
attention to design
specifications | | 5 | Seymour Recycling, IN
Summer - 1990
August-October, 1986
January-February, 1987 | In situ soil
bioremediation
ABB
Environmental
Services | Soil
(12 acres to 10
ft deep,
approximately
43,500 cy) | 54 contaminants present, including TCE, TCA, and Carbon Tetrachloride No standards or criteria for this OU in ROD | Additives - nitrogen, phosphorus, potassium, sulfur as fertilizer (200,000 gallons of nutrients added) | Tilling | Capping in
place | The soil became saturated quickly during this project, creating surface pools. The specially designed tractor got stuck. | | 5 | Outboard Marine/Waukegan
Harbor (OU #3), IL 1/92
to 7/92 | Thermal Desorption Canonie Environmental Services Porter, IN | Soil/Sediments
(16,000 cy) | PCBs
Initial 20,000 -
10,000 ppm 99%
removal | Continuous with a retention time of 15 minutes and throughput of 8-10 tons/hr. Temperature 1100°F Moisture content 20% or less Soda ash added to waste to meet DRE of 99.9999% | Excavation
Mixing
Dewatering | Cleaned soil
and sediment
stored in on-
site
containment
cells. Waste
water
discharged to
POTW. | Reduced PCB levels
much more than
expected. | | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Hedia Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|--|---|--|---|--|---|---| | 5 | Verona Well field
(Thomas Solvent/Raymond
Road), MI
March 1988 to May 1992 | Soil vapor
extraction
(attempted
nitrogen
sparging)
Terra Vac, Inc.
Costa Mesa, CA | Soil (35,000 cy,
1/2 acre to 18
ft. deep) | Initial soil concentration TCE 550,000 ppb; PCE 1.8 million ppb; Toluene 730,000 ppb; Xylene 500,000 ppb Criteria in all post remedial soil samples; Total Xylenes 6,000 ppb; Toluene 15,000 ppb; Benzene 20 ppb; Ethylbenzene 14,000 ppb; 1,1- DCE 10 ppb; trans-1,2-DCE 2,000 ppb; 1,1,1-TCA 4,000 ppb; Carbon tet., 10 ppb; 1,2- DCA 10 ppb; 1,1-DCA 20 ppb; Methylene chloride 100 ppb; cis-1,2 DCE 20 ppb; PCE 10 ppb; TCE 60 ppb | 60 - 160 cu ft/min of air Started >4,400 lbs/day removed Shut off 5 lbs/day removed Total removed 65,000 lbs | No materials handling; required installing extraction wells | Spent carbon was regenerated (and eventually incinerated) | Initial estimate of 7,000 lbs of VOCs product too low. Treatment equipment undersized. Needed better quantification of VOCs in soils to design appropriate size. Plan for enhancing system to deal with saturated soils and free product. Public information available includes performance report, and technical memo. | | 8# | Rocky Mountain Arsenal
(OU 18) Interim
Response, CO
June 1991 to
December 1991 | Soil vapor
extraction Vapor phase
carbon
adsorption to
capture vapors Woodward Clyde
Denver, CO | Soil (100 ft
radius down to
60 ft;
approximately
70,000 cy) | TCE Initial extracted gas concentration 60 ppm Final extracted gas concentration 2 to 3 ppm | 250-300 cu.
ft./min. of air
Total removed 64
lbs. | No materials
handling;
required
installing
extraction
wells | Vapors captured
on carbon | Sampling indicated the presence of TCE mainly in the soil gas samples and not the soil samples | | 9 | Fair Child
Semiconductor
San Jose, CA
1989 to June 1990 | Soil vapor
extraction with
air flushing
Carbon canister
air stripping
for pump and
treat | Soil (10,000 cy) | Initial concentration TCA 670,000 ppb; 1,1-DCE 6,400 ppb freon 113 7,200 ppb Final concentrations unknown Target was 1 ppm | In situ | Excavation
dewatering of
soil where
leaking UST
was discovered | | Will re-evaluate the remediation in 1994. | | Region | Site Name, State, Dates of Operation | | Media Treated
(Quantity) | | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|---|-----------------------------|--|-------------------------|-----------------------------------|---|----------| | 9 # | Sacramento Army Depot
Tank 2 Operable Unit, CA
11/91 to 4/93 | In-situ soil vapor extraction, extracted vapor treated with gas phase carbon adsorption, entrained (suspended) water treatment by the existing on-site UV- hydrogen peroxide treatment plant/Terra Vac, Inc. Costa Mesa, CA | Soil (150 cy) | VOCs (Ethylbenzene, PCE, MEK Total Xylenes) Initial concentration: MEK 0.011 - 15 mg/kg Ethylbenzene 0.006 - 2,100 mg/kg PCE 0.006 - 39 mg/kg Total Xylene 0.005 - 11,000 mg/kg Clean up goal 1.2 mg/kg MEK 6 mg/kg Ethylbenzene 23 mg/kg total Xylene 0.2 mg/kg PCE | 24 hours/day | None | Extracted vapor treated with gas phase carbon adsorption entrained (suspended) water treatment by the existing on-site UV-hydrogen peroxide treatment plant | | | | i | | | |---|---|--|--| · | # Chapter 2 Superfund Removal Actions THIS PAGE INTENTIONALLY LEFT BLANK #### SUPERFUND REMOVAL ACTIONS Superfund removal actions are conducted in response to an immediate threat caused by a release of hazardous substances. Removal action decisions are documented in an action memorandum. To date, innovative treatment technologies have been used in relatively few removal actions. The innovative technologies addressed in this report have been used 33 times in 28 removal actions (Figure 2-1). In addition, infrared incineration, no longer considered innovative, was
first used at two removal actions. Many removals involve small quantities of waste or immediate threats requiring quick action to alleviate the hazard. Often, such activities do not lend themselves to on-site treatment approaches. In addition, SARA does not prescribe the same preference for innovative treatment for removals that it does for remedial actions. EPA would like to increase the use of innovative treatment methods to address removal problems. One of the seven initiatives set forth in the EPA directive described in the foreword concerns removal actions. It is expected that innovative treatment technologies will be used more often in the future, for larger, and less time-critical removal actions. Table 2-1 provides detailed information for each application of an innovative technology at a removal site. Tables 2-2 and 2-3 provide summaries by EPA Region and status for all applications of innovative technologies at removal sites. Table 2-4 lists removal sites using established treatment technologies. #### **Frequency of Technology Selection** Figure 2-1 lists each type of innovative treatment technology and indicates how often that technology has been selected as a remedy for removal actions. Figure 2-1 illustrates that chemical treatment was selected most often and represented 21 percent of all applications of innovative treatment technologies at removal sites. Bioremediation (ex situ) was chosen six times and represented 18 percent of all applications of innovative treatment technologies at removal sites. ## Status of Innovative Technology Implementation Figure 2-2 indicates the status of innovative treatment technologies that are being applied at removal action sites. Since removals are responses to an immediate threat and often involve smaller quantities of hazardous wastes than remedials, the implementation of the technology may progress faster at a removal site than at a remedial site. The figure indicates that a large percentage, 58 percent, of removal projects involving innovative treatment technologies have been completed. Table 2-3 summarizes removal action sites using innovative treatment technologies by status and specific technology. Table 2-5 provides detailed information on removal projects that have been completed. FIGURE 2-2 SUPERFUND REMOVAL ACTIONS: PROJECT STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF JUNE 1993* | Technology | Predesign/
In Design | Design Complete/Being Installed/ Operational | Project Completed | Total | |----------------------------|-------------------------|--|-------------------|--------| | Soil Vapor Extraction | 0 | 1 | 3 | 4 | | Thermal Desorption | 1 | 0 . | 1 | 2 | | Ex Situ Bioremediation | 1 | 3 | 2 | 6 | | In Situ Bioremediation# | 0 | 2 | 2 | 4 | | Soil Washing | 0 | 1 | 1 | 2 | | In Situ Flushing | 0 | 0 | 0 | 0 | | Dechlorination | 0 | 1 | 2 | 3 | | Solvent Extraction | 0 | 0 | 2 | 2 | | In Situ Vitrification | 0 | 1 | 0 | 1 | | Other Innovative Treatment | 1 | 1 | 0 | 2 | | Chemical Treatment | 0 | 1 | 6 | -
7 | | TOTAL | 3 (9%) | 11(33%) | 19(58%) | 33 | Data derived from a survey of EPA Superfund Removal Branch Chiefs and On-Scene Coordinators for each Region. [#] Includes one in situ groundwater treatment. ## Contaminants Addressed by Innovative Treatment Technologies Figure 2-3 provides information, by technology, for three major contaminant groups treated at removal action sites: volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and metals. For this report, compounds are categorized as VOCs or SVOCs, using the lists provided in EPA's SW-846 Test Methods 8240 and 8270, respectively. #### **Treatment Trains** Innovative treatment technologies in this report may be used together with established or other innovative treatment technologies in treatment trains. Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. Table 2-4 lists the sites at which such treatment trains are being used. THIS PAGE INTENTIONALLY LEFT BLANK #### **TABLE 2-1** #### REMOVAL ACTIONS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY Table 2-1 is the principal part of this chapter. It contains the most detailed, site-specific information for removal sites for which innovative treatment technology has been selected. The columns of Table 2-1 present the following information: #### Region This column indicates the EPA Region in which the site is located. #### Site Name, State, Action Memo Date This column identifies the site and the operable unit for which an innovative treatment technology was selected. An action memorandum documents the selection of remedy in the removal program. The date shown in this column is the date on which an action memorandum was signed by an EPA official. An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site. #### **Specific Technology** The second column describes the specific technology selected within a general category of innovative treatment. For example, within the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be chosen. #### **Site Description** This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently selected innovative technology for wood preserving sites. #### Media (quantity) This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been made to include the maximum depth of the treatment to provide the reader with another parameter significant to the application. #### **TABLE 2-1 (Continued)** #### **Key Contaminants Treated** The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. There may be other contaminants as well that will be treated. Other contaminants that may be present, but that are not being addressed by the listed technology, are not included. #### **Status** This column indicates the status of the application of the innovative treatment technology. **Predesign** indicates that the ROD has been signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is in **design**, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is **being installed**, the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is **operational** if it is completely installed and it is now being operated as a treatment system; the remedy is **completed** if the goals of the ROD or decision document for that treatment technology have been met and treatment has ceased. One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the projects. Whenever possible, the season and year that the current phase will end is given. This information is identified as the "completion planned" date. #### **Lead Agency, Treatment Contractor** The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties will conduct the remedy with EPA/State oversight (PRP lead). If a remedy is Fund lead, EPA may manage the design/construction through its contractors, the state may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may act for EPA to manage the design or construction. Whichever agency or organization is responsible for managing the remedy, the contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead agency has selected a contractor. #### Contacts/Phone This final column provides the names and telephone numbers of useful contacts for the site or technology. The first name listed is usually the EPA on-scene coordinator (OSC) responsible for the site. If a remedy is being managed by the state, the name and phone number of the state RPM also is provided. Information on any other useful contacts is provided. #### Table 2-1 Removal Actions: Site-Specific Information By Innovative Treatment Technology #### Bioremediation (Ex situ) | Region | Site Name, State,
(Action Memo Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---------------------------------|--------------------------|--|---|---|--------------------------------| | 2 | GCL Tie and Treating,
NY
(3/26/91) | Composting | Wood preserving | Soil (4,800 cy) | PAHs (Creosote) | In design;
Pilot study
currently in
progress | Federal
lead/Fund
Financed;
ERT/REAC | Joe Cosentino
908-906-6983 | | 4 | Southeastern Wood
Preserving, MS
(09/30/90)
See also Soil Washing | Sturry phase
(preceded by
soil washing) | Wood preserving | Soil (8,000 cy) | PAHs (Creosote) | Operational;
Completion
planned
December 1993 |
Federal
lead/Fund
Financed; OHM
Remediation
Services Corp | Don Rigger
404-347-3931 | | 5 | Indiana Wood Treating,
IN
(10/11/92) | Composting | Wood preserving | Soil (18,000 cy) | PAHs (Creosote) | Operational;
Completion
planned Fall
1993; After 6
months 8 of 9
compost piles
below
treatment
target levels. | PRP
lead/Federal
oversight; IT
Corporation,
CMC, Inc
subcontractor | Steve Faryan
312-353-9351 | | 6 | MacMillan Ring Free
Oil Company*, AR
(11/09/92) | Solid phase | Petroleum refining
and reuse | Sediments (38,000
cy) | VOCs (BTEX), PAHs
(DAF Float) | Design
completed but
not installed;
Completion
planned Fall
1993; Waiting
for contractor
selection | Federal
lead/Fund
Financed | Charles Fisher
214-655-2224 | | 7 | Scott Lumber, MO
(07/10/87) | Land treatment | Wood preserving | Soil (16,000 cy) | SVOCs (Phenols),
PAHs
(Benzo(a)pyrene) | Completed;
Operational
from 1987 to
Fall 1991 | Federal
lead/Fund
Financed;
Remediation
Technologies | Bruce Morrison
913-551-5014 | | 9 | Poly-Carb, NV
(05/14/87)
See also Soil Washing | Land treatment | Commercial waste
management | Soil (1,500 cy) | SVOCs (Phenols),
PAHs (Cresol) | Completed;
Operational
from 7/87 to
8/88 | Federal
lead/Fund
Financed;
Reidel
Environmental
Services | Bob Mandel
415-744-2290 | Status as of June 1993. See Table 2-5 for performance and operational data on completed removal projects. Indicates that a treatability study has been completed. Contacts listed are EPA regional staff unless otherwise noted. Note: June 1993 # Table 2-1 Removal Actions: Site-Specific Information By Innovative Treatment Technology ## Bioremediation (In situ) | Region | Site Name, State,
(Action Hemo Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|-------------------------------------|------------------|---|--|--|--------------------------------| | 4 | CSX McCormick
Emergency Response
See also Soil Vapor
Extraction | In situ ground
water | Derailment (30,000
gallon spill) | Groundwater | VOCs (BETX) | Operational | PRP
lead/Federal
oversight;
Kemron | Steve Spurlin
404-347-3931 | | 6 · | Baldwin Waste Oil, TX
(07/01/92) | In situ soil | Waste oil recycler | Soil (550 cy) | VOCs (BTEX), PAHS
(TPH) | Operational;
Completion
planned Fall
1993 | Federal
lead/Fund
Financed;
Ecology &
Environment,
RSKERL (EPA),
Reidel
Environmental | Gary Guerra
214-665-6608 | | 9 | Gila River Indian
Reservation, AZ
(07/31/84)
See also Chemical
Treatment | In situ soil
Preceded by
chemical
treatment | Drum storage/
disposal | Soil (3,200 cy) | Biocides
(Toxaphene, Ethyl
and Methyl
Parathion) | Completed;
Operational
from 6/85 to
10/85 | PRP
lead/Federal
oversight | Richard Martin
414-744-2288 | | 9 | Roseville Drums, CA
(03/03/88) | In situ soil | Midnight Dump on
Dirt Road | .Soil (14 cy) | SVOCs
(Dichlorobenzene,
Phenols) | Completed;
Fall 1988;
Operational
from 2/88 to
11/88 | Federal
lead/Fund
Financed | Brad Shipley
415-744-2287 | # Table 2-1 Removal Actions: Site-Specific Information By Innovative Treatment Technology ### **Chemical Treatment** | Region | Site Name, State,
(Action Memo Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------------|---|--|---|------------------------------|---|--|---|--| | 2 | Vineland Chemical, NJ
(09/28/92) | Chemical
Treatment | Pesticide
manufacturing/use
/storage | Solids (100 lb) | Metals (Mercury) | Completed;
December 1992;
Operation
completed in
one month | Federal
lead/Fund
Financed; Ensco | Don Graham
908-321-4345
Steve Brawley
(Ensco)
706-278-1195 | | 2 | Zhiegner Refining
Company, NJ | Chemical
Treatment | Precious metal
recovery | Solids (100 lb) | Metals (Mercury) | Completed;
Summer 1993;
Operational
from 2/93 to
6/93 | Federal
lead/Fund
Financed; Ensco | Dilshad Perera
908-321-4356
Steve Brawley
(Ensco)
706-278-1195 | | 3 | Avtex Fibers, VA
(11/14/89) | Chemical
Treatment | Rayon
manufacturing
facility/wastewate
r treatment | Sludge 39,000 gl) | Organics (Carbon
disulfide) | Completed;
August 1991 | Federal
lead/Fund
Financed; OH
Materials | Vincent Zenone
215-597-3038 | | 5 | PBM Enterprises (Van
Dusen Airport
Service), MI
(04/10/88) | Oxidation using
Sodium
·Hypochlorite | Silver Recovery
Facility | Solids (quantity
unknown) | Organic Cyanides | Completed;
Operational
from 5/85 to
10/85 | Federal
lead/Fund
Financed;
American
Environmental
Service, Inc. | Ross Powers
312-378-7661 | | , 8 % | Mouat Industries*, MT
(09/20/91) | Reduction using
sulfuric acid
and ferrous
sulfate | Metal ore mining
and smelting | Soil (47,000 cy) | Metals (Chromium
IV) | Operational;
Completion
planned Spring
1994;
Operation
started June
1993 | PRP
lead/Federal
oversight;
Baker
Environmental | Tien Nguyen
303-297-7120 | | 9 | Gila River Indian
Reservation, AZ
(07/31/84)
See also
Bioremediation (In
Situ) | Reduction using
sodium hydroxide | Drum storage/
disposal | Soil (3,200 cy) | Biocides
(Toxaphene, Ethyl
and Methyl
Parathion) | Completed;
Operational
from 4/85 to
10/85 | Federal
lead/Fund
Financed | Richard Martin
414-744-2288 | Table 2-1 Removal Actions: Site-Specific Information By Innovative Treatment Technology June 1993 ### Chemical Treatment (continued) | Region | Site Hame, State,
(Action Hemo Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|---|------------------|--------------------------------|---|--|---------------------------| | 9 | Stanford Pesticide #1,
AZ
(04/20/87) | Chemical
treatment- •
alkaline
hydrolysis | Pesticide
manufacturing/use
/storage, Farm
Equipment Storage | Soil (200 cy) | Biocides (Methyl
Parathion) | Completed;
Operational
from 7/87 to
9/87 | Federal
lead/Fund
Financed;
Crosby and
Overton | Dan Shane
415-744-2286 | Table 2-1 Removal Actions: Site-Specific Information By Innovative Treatment Technology ### Dechlorination | Region | Site Name, State;
(Action Memo Date) | Specific
Technology | Site Description | Media
(Quantity) | Key
Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|------------------------|--|---------------------|---|---|---|--| | 2 | Signo Trading/Mt.
Vernon, NY
(12/19/86) | Dechlorination | Waste Management
Facility Warehouse | Sludge 15 gl) | Dioxins (2,3,7,8
TCDD-laden
herbicides) | Completed;
Operational
during
October, 1987 | Federal
lead/Fund
Financed;
Galson Research
Corp
(subcontractor
to OHM) | Charles
Fitzsimmons
201-321-6608 | | 6 | Fruitland Drum, NM
(09/08/90) | Dechlorination | Operation/maintenance
facility | Liquid (150 gl) | VOCs, Biocides,
Dioxins
(2,4,5-T), PAHs | Design
completed but
not installed;
Completion
planned Fall
1993; BCD was
selected after
APEG/KPEG was
unsuccessful | Federal
lead/Fund
Financed; USEPA
ERT/RREL | Craig Carlton
214-655-2220 | | 7 | Crown Plating, MO
(08/29/89) | Dechlorination | Electroplating | Liquid (55 gl) | Biocides
(silvex; 2,4,5
TP) | Completed;
Operational
from 10/ 89 to
12/89 | Federal
lead/Fund
Financed | Mark Roberts
913-236-3881 | Table 2-1 Removal Actions: Site-Specific Information By Innovative Treatment Technology June 1993 ## In Situ Vitrification | Region | Site Hame, State,
(Action Hemo Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and
Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--------------------------|--------------------------------|------------------|---|--|--|----------------------------| | 5 | Parsons Chemical (ETM
Enterprise), MI
(09/21/90) | In situ
Vitrification | Agricultural chemical facility | Soil (3,000 cy) | Biocides,
Dioxins, Metals
(Mercury) | Operational; Completion planned Fall 1993; First full-scale application of in situ vitrification at a hazardous waste site | Federal
lead/Fund
Financed;
Geosafe Corp. | Len Zintak
312-886-4246 | # Table 2-1 Removal Actions: Site-Specific Information By Innovative Treatment Technology ## Soil Vapor Extraction | Region | Site Name, State,
(Action Memo Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |------------|---|---|--|-------------------|---|--|---|-------------------------------| | 4 . | Basket Creek Surface
Impoundment*, GA
(04/11/91) | Soil vapor
extraction ex
situ, used on a
soil pile | Surface
impoundment used
for disposal of
solvents | Soil (2,000 cy) | VOCs (TCE, PCE,
MEK, MIBK,
Toluene, Xylene,
Benzene) | Completed;
Operational
from 11/92 to
2/93 | Federal
lead/Fund
Financed; OHM | Don Rigger
404-347-3931 | | 4 | CSX McCormick Derailment Site, SC See also Bioremediation (In Situ) | Soil vapor
extraction with
air flushing | Derailment (30,000
gallon spill) | Soil (200,000 cy) | VOCs (BETX) | Completed; | PRP
lead/Federal
oversight;
Midwest
Research
Institute | Steve Spurlin
404-347-3931 | | 4 | Hinson Chemical, SC
(11/28/88) | Soil vapor
extraction with
air flushing | Waste Reclaiming
Facility | Soil (60,000 cy) | VOCs | Completed;
March 1992;
Operational
December 1988
through March
1992 | Federal
lead/Fund
Financed; OH
Materials | Fred Stroud
404-347-3136 | | 8 | Mystery Bridge
Road/Highway 20, OU
2*, WY
Emergency Response
See also Other
Technologies | Soil vapor
extraction | Natural gas
compressor station | Soil (160,000 cy) | VOCs (Benzene) | Operational | PRP
lead/Federal
oversight;
Adrian Brown
Consultants | Bert Garcia
303-293-1526 | Table 2-1 Removal Actions: Site-Specific Information By Innovative Treatment Technology June 1993 ## Soil Washing | Region | Site Hame, State,
(Action Memo Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--------------------------------|--|-----------------------------------|--|--|-----------------------------| | 4 | Southeastern Wood
Preserving, MS
09/30/90)
See also
Bioremediation (Ex
Situ) | Soil washing
(sand removal,
followed by
bioremediation
of fines | Wood preserving | Sludge quantity
(unknown), Solids
(8,000 cy) | SVOCs, PAHs
(Creosote) | Operational;
Completion
planned Winter
1993 | Federal
lead/Fund
Financed; OHM
Remediation
Services Corp. | Don Rigger
404-347-3931 | | 9 | Poly-Carb, NV
(05/14/87)
See also
Bioremediation (Ex
Situ) | Soil washing | Commercial waste
management | Soil (1,500 cy) | SVOCs (Phenols),
PAHs (Cresol) | Completed;
Operational
7/87 to 8/88 | Federal
lead/Fund
Financed;
Reidel
Environmental
Services | Bob, Mandel
415-744-2290 | # Table 2-1 Removal Actions: Site-Specific Information By Innovative Treatment Technology ## **Solvent Extraction** | Region | Site Name, State,
(Action Memo Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|------------------------|---------------------------------|--|-----------------------------|---|--|---------------------------------| | 4 | General Refining*, GA
(08/13/85) | Solvent
extraction | Waste oil
recycling facility | Sludge 2,700 cy),
Solids (700 cy),
Soil (6,600 gl) | PCBs | Completed;
Operational
from 8/86 to
2/87 | Federal
lead/Fund
Financed;
Resource
Conservation
Co. | Shane Hitchcock
404-347-3136 | | 6 | Traband Warehouse, OK (01/01/88) | Solvent
Extraction | Storage Management
Complex | Solids (quantity
unknown) | PCBs | Completed;
Project ended
in February,
1989 | Federal
lead/Fund
Financed;
Terra-Clean | Pat Hammack
214-655-2270 | Table 2-1 Removal Actions: Site-Specific Information By Innovative Treatment Technology June 1993 ## Thermal Desorption | Region | Site Name, State,
(Action Hemo Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|------------------------|--|------------------|--|--|--|-------------------------------| | 4 | FCX-Washington Site,
NC
(12/04/91) | Thermal
Desorption | Pesticide
manufacturing/use
/storage | Soil (5,000 cy) | Biocides
(Chlordane,
Methoxyclor, DDT,
DDE) | Predesign; Original action memo specified incineration; revised action memo will be completed in Fall 1993 | Federal
lead/Fund
Financed | Paul Peronard
404-347-3931 | | 10 | Drexler - RAMCOR*, WA
(09/30/91) | Thermal
Desorption | Waste oil recycler | Soil (3,000 cy) | VOCs (BTEX), PAHs
(Petroleum
hydrocarbons) | Completed;
Operational
from 7/92 to
8/92 | Federal
lead/Fund
Financed; Four
Seasons | Chris Field
206-553-1674 | # Table 2-1 Removal Actions: Site-Specific Information By Innovative Treatment Technology ### Other | Region | Site Name, State,
(Action Memo Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|-----------------------------|-----------------------------------|--|-----------------------------|---|--|---------------------------------| | 2 | Imperial Oil Company,
NJ
(09/29/92) | Viscous fluid
extraction | Former Waste Oil
Recycler | Soil (quantity
unknown),
Groundwater | VOCs, PCBs, PAHs | Being
installed;
Installation
completion
planned Fall
1993;
Operational by
Fall 1993 | Federal
lead/Fund
Financed;
Enivronmental
Technology of
North America | Louis DiGuardia
908-906-6927 | | 8 | Mystery Bridge
Road/Highway 20, OU
2*, WY
See also Soil Vapor
Extraction | Air Sparging | Natural gas
compressor station | Groundwater | VOCs (Benzene) | In design; Design completion planned Summer 1993; Pilot-scale is currently operating | PRP
lead/Federal
oversight;
Adrian Brown
Consultants | Bert Garcia
303-293-1526 | THIS PAGE INTENTIONALLY LEFT BLANK ### **TABLE 2-2** ## REMOVAL ACTIONS: INNOVATIVE TREATMENT TECHNOLOGIES BY EPA REGION Table 2-2 summarizes the innovative treatment technologies used at sites where removal actions were conducted in each EPA region. | TECHNOLOGY | SITE NAME | STATE | TECHNOLOGY | SITE NAME | STATE | |--|---|----------------------|--|---|----------------| | | REGION 2 | | | REGION 6 | | | Chemical Treatment Chemical Treatment Viscous fluid | Vineland Chemical Zhiegner Refining Company | NJ
NJ
NJ | Bioremediation (Ex situ) Dechlorination | MacMillan Ring Free Oil Company Fruitland Drum | AR
NM | | extraction Bioremediation (Ex situ) Dechlorination | Imperial Oil Company GCL Tie and
Treating | NY | Solvent Extraction Bioremediation (In situ) | Traband Warehouse
Baldwin Waste Oil | OK
TX | | Decinorination | Signo Trading/Mt. Vernon | NY
 | | REGION 7 | | | | REGION 3 | | Bioremediation (Ex situ) Dechlorination | Scott Lumber
Crown Plating | MO
MO | | Chemical Treatment | Avtex Fibers | VA | | | | | | REGION 4 | | | REGION 8 | | | Solvent Extraction Soil Vapor Extraction Bioremediation (Ex situ) Soil Washing | General Refining Basket Creek Surface Impoundme Southeastern Wood Preserving Southeastern Wood Preserving | GA
GA
MS
MS | Chemical Treatment Soil Vapor Extraction Air Sparging | Mouat Industries
Mystery Bridge Road/Highway 20
Mystery Bridge Road/Highway 20 | MT
WY
WY | | Thermal Desorption Bioremediation (In situ) Soil Vapor Extraction | FCX-Washington Site CSX McCormick Derailment Site CSX McCormick Derailment Site | NC
SC
SC | | REGION 9 | | | Soil Vapor Extraction | Hinson Chemical | SC . | Bioremediation (In situ) Chemical Treatment Chemical Treatment | Gila River Indian Reservation
Gila River Indian Reservation
Stanford Pesticide #1 | AZ
AZ
AZ | | | REGION 5 | | Bioremediation (In situ) Bioremediation (Ex situ) Soil Washing | Roseville Drums
Poly-Carb
Poly-Carb | CA
NV
NV | | Bioremediation (Ex situ) Chemical Treatment In situ Vitrification | Indiana Wood Treating PBM Enterprises (Van Dusen Airport) Parsons Chemical (ETM Enterprises) | IN
MI
MI | | REGION 10 | | | m situ vitimeation | rations Chemical (Exivi Emerprises) | IATI | Thermal Desorption | Drexler - RAMCOR | WA | #### **TABLE 2-3** ### REMOVAL ACTIONS: PROJECT STATUS BY INNOVATIVE TREATMENT TECHNOLOGY Table 2-3 lists the applications of innovative treatment technologies at removal sites by technology and summarizes the status of the specific application. The symbols used in this table are: - PD In **predesign**: A site may be considered to be in predesign if EPA is negotiating the consent decree for the design with the responsible party, the lead agency is preparing the predesign report, the lead agency is contracting for the design firm, or the lead agency is conducting a treatability study or field investigation before beginning actual design work. - D In design: A site is considered to be in design after the design contractor has begun work. - D/I Design completed but not installed: This symbol is used if the **design** work has been completed but **installation** work had not yet begun at the time of publication of this report. - I Being installed: An innovative treatment technology is "being installed" from the time the construction contract has been awarded until the time the treatment system has begun operation. For some technologies, this is a relatively short phase of the project, because such projects are quickly assembled on site. For other technologies, the period of installation lasts several construction seasons. - O Operational: A treatment technology is operational once it has been constructed and has been proven to be functional. The length of time required to complete the operation phase depends on such factors as the nature of the technology, the quantity of material to be treated, and the concentrations of the contaminants at the start of treatment. - C Completed: A treatment technology project is considered to be completed when the operation of the treatment technology ceases. Other site activities still may be planned or ongoing. ## TABLE 2-3. REMOVAL ACTIONS: PROJECT STATUS BY INNOVATIVE TREATMENT TECHNOLOGY June 1993 | REGION | BIOREMEDIATION (EX SITU) | STATUS | REGION | IN SITU VITRIFICATION | STATUS | |-----------------------|---|------------------|------------------|--|--------------------| | 2
6 | GCL Tie and Treating, NY MacMillan Ring Free Oil Company, AR | D
D/I | 5 | Parsons Chemical (ETM Enterprise), MI | o | | 4
5
7
9 | Southeastern Wood Preserving, MS Indiana Wood Treating, IN Scott Lumber, MO Poly-Carb, NV | 0
0
C
C | REGION
8
4 | SOIL VAPOR EXTRACTION Mystery Bridge Road/Highway 20, OU 2, WY | <u>STATUS</u>
O | | REGION | BIOREMEDIATION (IN SITU) | STATUS | 4 4 | Basket Creek Surface Impoundment, GA CSX McCormick Derailment Site, SC Hinson Chemical, SC | с
с
с | | 4
6
9
9 | CSX McCormick Derailment Site, SC
Baldwin Waste Oil, TX
Gila River Indian Reservation, AZ
Roseville Drums, CA | 0
0
C
C | REGION 4 9 | SOIL WASHING Southeastern Wood Preserving, MS Poly-Carb, NV | STATUS
O
C | | REGION | CHEMICAL TREATMENT | STATUS | | | | | 8
2
2
3
5 | Mouat Industries, MT
Vineland Chemical, NJ
Zhiegner Refining Company, NJ
Avtex Fibers, VA
PBM Enterprises (Van Dusen Airport Service), MI | 0
C
C
C | REGION
4
6 | SOLVENT EXTRACTION General Refining, GA Traband Warehouse, OK | STATUS
C
C | | 9 | Gila River Indian Reservation, AZ Stanford Pesticide #1, AZ | C
C | REGION | THERMAL DESORPTION | STATUS | | REGION | <u>DECHLORINATION</u> | STATUS | 4
10 | FCX-Washington Site, NC
Drexler - RAMCOR, WA | PD
C | | 6
2
7 | Fruitland Drum, NM
Signo Trading/Mt. Vernon, NY
Crown Plating, MO | D/I
C
C | REGION | OTHER | <u>STATUS</u> | | | | | 8
2 | Mystery Bridge Road/Highway 20, OU 2, WY
Imperial Oil Company, NJ | D
I | #### **TABLE 2-4** ### REMOVAL ACTIONS: TREATMENT TRAINS WITH INNOVATIVE TREATMENT TECHNOLOGIES Table 2-4 lists the at which innovative treatment technologies are used together with established or other innovative treatment technologies in treatment "trains." Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. ### Chemical Treatment Followed by | In Situ Bioremediation | Gila River Indian Reservation | AZ | |--|-------------------------------|----| | In Situ Flushing Followed by In Situ Bioremediation | Polycarb | NV | | Soil Washing Followed by Bioremediation | Southeastern Wood Preserving | MS | | Solvent Extraction Followed Solidification/Stabilization | <u>by</u>
General Refining | GA | #### **TABLE 2-5** ### REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS Table 2-5 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at removal sites. It is intended to supplement, not replace, the information included in tables 2-1, 2-2, and 2-3. | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Hedia Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Hanagement | Comments | |--------|---|--|-----------------------------|---|---|-----------------------------------|---|---| | 2 | Signo Trading
International, Inc., NY
10/20/87 to 10/21/87
(Removal) | KPEG
dechlorination/
Galson
Remediation,
Syracuse, NY | Sludge (15
gallons) | Dioxin
Input - 135 ppb
Output - 1 ppb | Temperature:
150°C
Time: Overnight | Kone | Incineration of residuals (without dioxin contamination) at treatment, storage, and disposal facility | | | 2.# | Vineland Chemical
Company, NJ
12/92
(Removal) | Mercury pretreatment precipiated mercury salts into mercury sulfide so that the mercury can be recovered and recycled. ENSCO | Solid 100 lbs | Mercury initial concentration >10% mercury Final concentration of mercury in recyclable precipitate was greater than 80%. Less than 260 ppm if mercury in thatn nonrecycled salt. | Added salt to
precipitate the
mercury | None | Residual salts
containing less
than 260 pm
mercury were
incinerated
off-site | First known Superfund
site where this
process has been
applied | | 2 # | Zhiegner Refining
Company (Removal)
2/93 - 6/93 | Mercury pretreatment precipiated mercury salts into mercury sulfide so that the mercury can be recovered and recycled. ENSCO | Solid 100 lbs | Mercury initial concentration >10% mercury Final concentration of mercury in recyclable precipitate was greater than 80%. Less than 260 ppm if mercury in thatn nonrecycled salt. | Added salt to
precipitate the
mercury | None | Residual salts
containing less
than 260 pm
mercury were
incinerated
off-site | No comments | ## TABLE 2-5 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|---|---
--|--|---|---|---| | 3 | Avtex Fibers, VA
4/90 to 8/91
(Removal) | Chemical treatment (oxidation using NaClO) OH Materials, Findlay, OH (ERCS Contractor) | Sludge/water
from storage
unit (2 million
gallons) | Carbon disulfide Criteria: ≤10 ppm - Carbon disulfide in the effluent Input: 50-200,000 ppm Carbon disulfide Output: ≤10 ppm Carbon disulfide | Batch operation average retention time - 1 hour pH - 10 Additives: Sodium hypochloride. The retention time and reagent feed rates increased with increasing concentration of sludge in the contaminated water. | Pumping | Salts from the reaction were removed with flocculation and clarification at existing treatment plant, pH adjustment | Carbon disulfide is unstable and will be found with other contaminants in aqueous waste stream. For additional information on this project, see the Removal Close Out Report available from EPA - Region III or OH Materials. | | 4 | General Refining
Company, GA
August-October, 1986
January-February, 1987
(Removal) | Solvent
extraction
Resource
Conservation
Technology
Company,
Bellevue, WA | Sludge (3,448 tons) | Input: PCB - 5.0 ppm Lead - 10,000 ppm Output: PCB - insignificant Lead - concentrated in solids | Continuous operation Time: 2 hours pH: 10 Temp: 20°C Rate: 27 tons/day Moisture content - 60% Additives: Sodium hydroxide Triethylamine | Excavation
Screening
Neutralization
Size Reduction
Mixing | Oil - used as
fuel for kiln
Water -
treated,
discharged off
site
Solids -
solidified and
disposed of on
site | The oil recovered from the extractions process could not be sold because of an elevated metals content. The solvent could not be recovered due to leaks in system seals. The unit required a relatively uniform material so materials handling of the sludges proved difficult in the beginning of the project. The leadbearing solids produced by the dryer also required special handling. Finally, detergents in the sludge hindered oil/water separation. | | Region | | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Haterials
Handling
Required | Residuals
Management | Comments | |--------|---|---|--|--|---|--|--|---| | 4 | Hinson Chemical, SC
12/88 to 3/92 (Removal) | Soil vapor
extraction
OH Materials
Atlanta, GA | Soil
(60,000 cy, up
to 50 ft deep) | Benzene, TCE, PCE,
DCA, MEK At completion: <10 ppm Total VOCs
(In all samples);
average <1 ppm Total
VOCs | In situ; continuous operation (except for occasional shut downs to allow soil gas to reach equilibrium in the pore spaces) | | Air emissions
captured on
vapor phase
carbon
No cap needed | | | 4# | CSX McCormick Derailment
Site, S.C.
(Removal) | Soil vapor
extraction with
air flushing
MWRI | Soil (200,000
cy) | Benzene-toluene-
ethylbenzene-xylene
(BTEX)
130,000 gallon spill | Used a system of extraction and injection wells. 1,000 separate PVC wells. Injection wells 7 to 8 feet deep. Extraction wells 2-3 feet deep. Vapors captured and put through a knock out pot and incinerated. | Brought in
clay to cover
the area, to
prevent air
from
infiltrating | Residual
wastewater sent
off-site for
treatment | System was successful in decreasing concentration to cleanup goals. Had difficulties due to fluctuation of shallow ground water. Did not anticipate the change in ground water to be as drastic as it was. It decreased the efficiency, less vapors and more water. Now need to address ground water. Could have used the soil vapor extraction in a more limited area. | ## TABLE 2-5 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|--|---|--|---|--|--|---| | 4# | Basket Creek Surface
Impoundment, GA
11/92 - 2/93 (Removal) | Vacuum extraction of soil pile with horizontal wells (ex-situ) OHM | Soil (2,000 cy) | VOCS TCE, PCE, MEK, MIBK, BTEX High 33% VOCS Average 1-5% Criteria: TCE - 0.5 mg/L TCLP PCE - 0.7 mg/L TCLP All VOCs met TCLP Limits | Vacuum pressure
monitored. 1,300
CFM/Manifold
3 manifold
6-7 wells/manifold | Surface impoundment used for disposal of waste solvents. Built an enclosure over the site. Excavated the soil and screened it with a power screen. Stacked on PVC extraction wells. Recovered VOCs with duct work and fan. Vapors incinerated. | Residual soils and rejects from screening met TCLP limits and were disposed as nonhazardous as on RCRA Subtitle D landfill. Incinerated 70,000 lbs of VOCs | \$2,000,000 total costs. Permeability in-situ soil was not good at first. Excavation and ex-situ treatment improved permeability. Shouldn't rule out if you can't do in situ. | | 5 | PBM Enterprises, MI
3/25/85 to 10/28/85
(Removal) | Neutralization with hypochlorite process Mid-American Environmental Service, Riverdale, IL | Film chips (464
tons or 1,280
cy) | Cyanide
Input: 200 ppm
Output: 20 ppm | Time: 2-3 hours Additives: sodium hydroxide | Agitation | Rinse water,
runoff and
waste
hypochlorite -
treated off
site
Treated chips -
landfilled
(Subtitle D) | | | 6 | Traband Warehouse
PCBs, OK (Removal)
2/90 to 9/90 | Solvent
Extraction/
Terra Kleen | Solids | PCBs
Initial: 7,500 ppm | | | | | | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Hanagement | Comments | |--------|---|--|-----------------------------|--|---|-----------------------------------|--|----------| | 7 | Crown Plating, MO
10/1/89 to 12/31/89
(Removal) | Dechlorination
using the KPEG
process
EPA removal
contractor | Liquid (5
gallons) | Criteria: Dioxin - <1 ppb Input: Silvex - 10,000 ppm Dioxin equivalents - 24.18 ppb Output: Silvex - 32 ppb Dioxin equivalents - 0.068 ppb | Batch operation Retention time - 36 hours (including time of equipment breakdown) Temperature - 72°C pH - 13 Moisture content - 100% | · | Built an on-
site vacuum for
emissions
control
Contaminated
residual oil
incinerated
off-site | | | 7 | Scott Lumber, MO
8/87 - Fall, 91
(Removal) | Land
Treatment
RETEC
Chapel Hill, NC | Soil (16,000 cy) | Criteria: 500 ppm - Total PAH 14 ppm - Benzo(a)pyrene Output: 160 ppm Total PAH 12 ppm Benzo(a)pyrene | Additives:
Water
phosphates | Tilling | None | | ## TABLE 2-5 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|---|-----------------------------|--|---|-----------------------------------|-------------------------|---| | 9 | Gila River Indian
Reservation, AZ
3/28/85 to 6/24/85
(Removal) | In situ chemical treatment (followed by anaerobic bio- remediation) EPA removal contractor | Soil (3,220 cy) | Input: Toxaphene - 1,470 ppm Ethyl parathion - 86 ppm Methyl parathion - 24 ppm Output: Toxaphene - 470 ppm Ethyl parathion - 56 ppm Methyl parathion - 3 ppm | pH: 10.2 to 11.8
Moisture: wet
Additives to soil:
Sodium hydroxide,
Water | | Bioremediation | | | 9 | Gila River Indian
Reservation, AZ
6/24/85 to 10/23/85
(Removal) | In situ anaerobic biological treatment (preceded by chemical treatment) EPA removal contractor | Soil (3,220 cy) | Toxaphene Input: 470 ppm Output: 180 ppm | pH: 8.3 to 9.8
Additives to soil:
Sulfuric acid,
manure, sludge | Tilling | Capped in place | The biological treatment would have been more successful if the neutralization after the chemical treatment had been more complete. The tearing of the plastic sheets covering the soils allowed air in and prevented anaerobic activity. | | 9 | Roseville Drums, CA
2/12/88 to 11/9/88
(Removal) | In situ
Bioremediation
EPA removal
contractor | Soil (14 cy) | Input: Dichlorobenzene - 4,000 ppm Phenol - 12,000 ppm Output: Dichlorobenzene - 140 ppm Phenol - 6 ppm | Additives to soil:
manure, water | Tilling | | | | Region
9 | Site Hame, State, Dates of Operation Stanford Pesticide Site #1, AZ 3/20/87 to 11/4/87 (Removal) | Technology/
Vendor Chemical treatment - alkaline hydrolysis EPA removal contractor | Hedia Treated
(Quantity)
Soil (200 cy) | Key Contaminants
Treated Methyl parathion Input: 24.2 ppm Output: 0.05 ppm | Operating Parameters pH: 9.0 Moisture: wet Additives to soil: soda ash, water, activated carbon | Haterials Handling Required Tilling (in situ, 3 times per week) | Residuals
Management | Comments | |-------------|---|---|--|--|--|---|---|--| | 9 | Poly-Carb, Inc., NV
7/22/87 to 8/16/88
(Removal) | Land treatment
and soil
washing
EPA removal
contractor | Soil (1,500 cy) | Input: Phenol 1,020 ppm o-cresol - 100 ppm m- and p-cresol - 409 ppm Output: Phenol - 1 ppm o-cresol - 1 ppm m- and p-Cresol - 0.92 ppm | Additives: water | Excavation Placement in double-lined pit Irrigation Tilling | Leachate collection and treatment with granular activated carbon | This treatment used both bioremediation and soil flushing in one step. | | 10 # | Drexler-RAMCOR, WA
7/92 to 8/92
(removal) | Low temperature thermal desorption treatment. Thermally treat 3,000 tons of soil on-site up to 700°F. Four Seasons | Soil 3,000 tons
(approximately
3,000 cy) | Petroleum hydrocarbons Polynuclear Aromatics, BTEX (Benzene, Toluene, Ethylbenzene, Xylene 200 ppm TPH was target. Initial TPH was 70,000 ppm - (high) 15,000 - 20,000 ppm (average). | 16 hours/day 12 to 15 tons/hr Operating temperature up to 700°F | Excavation screening Removed material greater than 2 inches. Rock washing station for particles greater than 2 inches. Steam cleaned large rocks. | Treated soil was backfilled back into the excavated areas on-site. Soil that did not meet the targets was re- treated. Wastewater was treated on-site through carbon filters. | Total cost approximately \$250,000. | ## Chapter 3 Actions Under Other Federal Programs THIS PAGE INTENTIONALLY LEFT BLANK #### **ACTIONS UNDER OTHER FEDERAL PROGRAMS** This chapter contains available information on projects conducted under other federal programs that are not part of the Superfund program (non-Superfund sites). Many of these projects take place at DoD and DOE facilities. Many of the DoD projects are funded by the Defense Environmental Restoration Program (DERP), which includes the installation restoration program (IRP) and the formerly used defense sites (FUDS) program in DoD. These sites were identified through various sources of information, including discussions with DoD and DOE personnel. However, this list of sites should not be considered comprehensive. This chapter contains information on the application of innovative technologies at 28 non-Superfund sites. Figure 3-1 lists each type of innovative treatment technology and the number of times it has been selected as a remedy at a non-Superfund site. Figure 3-2 indicates the status of innovative technologies being applied at non-Superfund sites. Table 3-1 provides detailed information on each application. Tables 3-2 and 3-3 resent summaries of each application by status and EPA Region. Table 3-4 lists details on completed applications. FIGURE 3-1 SAMPLE OF PROJECTS UNDER OTHER FEDERAL PROGRAMS: STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF JUNE 1993* | Technology | Predesign/
In Design | Design Complete/Being Installed/ Operational | Project Completed | Total | |----------------------------|-------------------------|--|-------------------|-------| | Soil Vapor Extraction | 4 | 4 | 1 | 9 | | Thermal Desorption | 0 | 0 | 0 | 0 | | Ex Situ Bioremediation | 1 | 1 | 3 | 5 | | n Situ Bioremediation* | 2 | 5 | 2 | 9 | | Soil Washing | 1 | 0 | 1 | 2 | | n Situ Flushing | 0 | 0 | 0 | 0 | | Dechlorination | 0 | 1 | 0 | 1 | | Solvent Extraction | 0 | 0 | 0 | 0 | | n Situ Vitrification | 0 | 0 | 0 | 0 | | Other Innovative Treatment | 1 | 1 | 0 | 2 | | Chemical Treatment | 0 | 0 | 0 | 0 | | TOTAL | 9 (32%) | 12 (33%) | 7 (58%) | 28 | Data derived from a survey of EPA Superfund Removal Branch Chiefs and On-Scene Coordinators for each Region. Also includes in situ groundwater treatment. THIS PAGE INTENTIONALLY LEFT BLANK #### OTHER FEDERAL PROGRAMS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY Table 3-1 is the principal part of this chapter. It contains the most detailed, site-specific information for removal sites for which an innovative treatment technology has been selected. The columns of Table 3-1 present the following information: #### Region This column indicates the EPA Region in which the site is located. #### Site Name, State This column identifies the site and the operable unit for which an innovative treatment technology was selected. An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site. #### **Specific Technology** The second column describes the specific technology selected within a general category of innovative treatment. For example, within the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be chosen. #### **Site Description** This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently selected innovative technology for wood preserving sites. #### Media (quantity) This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been made to include the maximum depth of the treatment to provide the reader with another important parameter regarding the application. #### TABLE 3-1 (Continued) #### **Key Contaminants Treated** The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. There may be other contaminants as well that will be treated. Other contaminants that may be present, but that are not being addressed by the listed technology, are <u>not</u> included. #### **Status** This column gives the status of the application of the innovative treatment technology. **Predesign** indicates that the ROD has been signed but design has not begun. During predesign, EPA may be negotiating with the
potentially responsible parties, procuring the services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is in **design**, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is **being installed**, the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is **operational** if it is complete and it is now being operated as a treatment system; the remedy is **completed** if the goals of the ROD or decision document for that treatment technology have been met and treatment has ceased. One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the projects. Whenever possible, the season and year that the current phase will end is given. This information is identified as the "completion planned" date. #### **Lead Agency, Treatment Contractor** The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties will conduct the remedy with EPA/State oversight (PRP lead). If a remedy is Fund lead, EPA may manage the design/construction through its contractors, the state may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may act for EPA to manage the design or construction. Whichever agency or organization is responsible for managing the remedy, the contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead agency has selected a contractor. #### Contacts/Phone This final column gives the names and telephone numbers of useful contacts for the site or technology. The first name listed is usually the project manager or point of contact responsible for the site. If a remedy is being managed by the state, the name and phone number of the state project manager also is provided. Information on any other useful contacts is provided. #### Bioremediation (Ex situ) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|------------------|--|--|--|--| | 6 | Matagorda Island AF
Range, TX | Solid phase | Federal Facility | Soil (500) | VOCS (BTEX), PAHS
(TPH, Tar) | Completed;
Operational
from 10/92 to
3/93 | Army
(USACE)/DoD
Financed - IRP
Program; CCC,
Inc. | Vic Heister
918-669-7222 | | 8 | Former Glasgow AFB, MT | Land treatment | UST removal site | Soil (2,000 cy) | VOCs, PAHs
(Petroleum
hydrocarbons) | In design; Design completion planned Fall 1993; Contractor will be selected in Fall 1993 | ARMY
(USACE)/Dob
Financed FUDS
Program | Martin
Rasmussen
(USACE, Omaha)
402-221-3827
Steve Ott
(USACE, Omaha)
402-221-7670 | | 9 | Ft. Ord Marina,
Fritzche AAF Fire
Drill Area, CA | Land treatment | Fire Drill Area | Soil (4,000 cy) | VOCs (TCE, MEK),
PAHs (Petroleum
hydrocarbons) | Completed;
Winter 1991 | Army
(USACE)/DoD
Financed - IRP
Program | Gail Youngblood
408-242-8017 | | 9 | Marine Corps.,
Mountain Warfare
Center, Bridgeport, CA | Bioremediation
(Ex Situ) Heap
pile bioreactor
with aeration
and irrigation | Federal Facility | Soil (7,000 cy) | PAHs (Petroleum
hydrocarbons,
Diesel) | Completed;
1989;
Pilot-scale
project | State
Lead/Western
Division of
NFEC; ENSR | Bill Major
805-982-1808 | | 10 | Ft. Wainwright*, AK | Land treatment | Federal Facility,
fuel pipeline,
aboveground
storage tank | Soil (4,500 cy) | PAHs (Diesel) | Being
installed;
Installation
completion
planned Fall
1993 | Army
(USACE)/DoD
Financed - IRP
Program;
Laidlaw | Diane Soderland
907-753-3425
David Williams
(USACE)
907-753-5657 | Status as of June 1993. See Table 3-4 for performance data on completed projects under other Federal programs. Indicates that a treatability study has been completed. Contacts listed are EPA regional staff unless otherwise noted. #### Bioremediation (In situ) | Region | Site Hame, State,
(ROO Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--|----------------------------|---|---|---|--| | 4 | Savannah River DOE, M
Area Settling Basin,
SC
See also Soil Vapor
Extraction, Other
Technologies | In situ ground
water | Leaking solvent
line | Groundwater | VOCs (TCE, PCE),
PAHs (DNAPLS) | Operational;
Operation
began in 1990 | DOE Lead/DOE
funding;
Westinghouse
Savannah River
Company | Nate Ellis
(DOE)
(803)-952-4846
Brian Loony
(WSRC)
(803)-752-5181 | | 6 | Holloman AFB, Main POL
Area, NM
See also Soil Vapor
Extraction, Other
Technologies | In situ ground
water injecting
air and
nutrients | Former above
ground fuel
storage tank area
(JP-4 and AV Gas
spill) | Groundwater | VOCs (Benzene),
PAHs (Petroleum
Hydrocarbons) | In design; Design completion planned Fall 1993; Construction scheduled to start Fall 1993 | USACE/AIR Force
IRP Program | Ron Stirling
(USACE)
402-221-7664 | | 6 | Kelly AFB, Site 1100*,
TX
See also Soil Vapor
Extraction | In situ soil
Bioventing | Federal Facility
(hazardous waste
facility) | Soil (37,000 cy) | VOCs (JP-4) | Operational;
Completion
planned 1994 | Army
(USACE)/Air
Force Funded;
IT Corporation | Joe Laird
(USACE, Omaha)
402-221-7772 | | 8 | Ft. Carson*, CO | In situ soil
Bioventing | UST Remediation | Soil (quantity
unknown) | VOCs (JP-4) | Being
installed;
Installation
completion
planned Summer
1993 | Army
(USACE)/DoD
Financed - IRP;
Woodward Clyde | Mike
Steffensmeier
(USACE)
402-342-7163 | | 9 | Aua Fuel Farm, Aua
Village, American
Samoa, | Bioremediation
(In Situ) | Fuel Farm | Soil (quantity
unknown) | PAHs (Diesel
fuel) | Operational | Army
(USACE)/DoD
Financed - FUDS
Program | Helene Takemoto
(USACE, pac
div)
808-438-6931 | | 9 | Davis Monthan AFB, AZ | In situ soil | Federal Facility | Soil (440 cy) | PAHs (Petroleum
hydrocarbons) | Completed;
Operational
from 7/91 to
3/92 | USACE/Air Force | Mike
Steffansmeyer
(USACE, Omaha)
402-221-7163 | #### Bioremediation (In situ) (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|----------------------------|--|----------------------------|--|--|--|--| | 9 | Davis Monthan AFB,
Site 35, AZ
See also Soil Vapor
Extraction | In situ soil
Bioventing | JP-4 Pump House | Soil (63,000 cy) | VOCs (JP-4), PAHs | In design;
Design
completion
planned Fall
1993 | USACE/ Air
Force Funded | Mike
Steffanmeyer
(USACE, Omaha)
402-221-7163 | | 9 | Seal Beach Navy
Weapons Station, CA
See also Soil Vapor
Extraction | Anaerobic | Federal Facility
Naval weapons
station | Soil (1,700 cy) | VOCs (BTEX), PAHs
(Petroleum
hydrocarbons) | Operational;
Operations
started in
1989 | Navy/DoD
Financed - IRP
Program; Jacobs
Engineering | Jeff Kidwell
(Navy)
619-532-2058
Steve McDonald
(Navy)
310-594-7655 | | | Naval Communication
Station, Scotland, | In situ soil | Diesel fuel
storage tanks and
piping | Soil (quantity
unknown) | SVOCs (No.2
Diesel) | Completed;
Fall 1985 | Nave Civil
Engineering
Lab/DoD
Federal;
Polybac | Deh Bin Chan
805-982-4191 | Table 3-1 Other Federal Programs: Site-Specific Information By Innovative Treatment Technology June 1993 #### Dechlorination | Region | Site Hame, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|------------------------------------|------------------------|------------------|------------------|-----------------------------|--
--|---------------------------| | 9 | U. S. Public Works
Center, Guam | Dechlorination | Federal Facility | Soil (5,500 cy) | PCBs | Operational;
Completion
planned
Summer 1994 | Navy; IT Corp | D.B. Chan
805-982-4191 | #### **Soil Vapor Extraction** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|--|-----------------------------------|---|---|--|---| | 3 | Langley AFB, IRP Site
28, VA | Soil vapor
extraction with
air flushing | Federal Facility | Soil (quantity
unknown) | VOCs (Gasoline) | Being
installed;
Installation
completion
planned Summer
1994 | USACE/Air Force
Funded | Tom Zink
(USACE, Omaha)
402-342-6051
Dan Musell
(Langley)
804-764-3987 | | 4 | Savannah River DOE, M
Area Settling Basin,
SC
See also
Bioremediation (In
Situ), Other
Technologies | Soil vapor
extraction with
air flushing
with ground
water sparging | Leaking solvent
line | Soil (450,000
lb), Groundwater | VOCs (TCE, PCE) | Operational;
Operation of
the SVE system
began in 1990 | DOE Lead/DOE
Funding;
Westinghouse
Savannah River
Company | Nate Ellis
(DOE)
803-952-4846
Brian Looney
(WSRC)
803-725-5181 | | 6 | Holloman AFB, BX
Service Station, NM | Soil vapor
extraction may
supplement with
air injection | Service Station | Soil (quantity
unknown) | VOCs (Benzene),
PAHs (Petroleum
Hydrocarbons) | In design; Design completion planned Winter 1993; Currently conducting pilot test. | USACE/Air Force
IRP Program;
Geraghty &
Miller - Prime,
Walk Haydel &
Associates -
Sub | Ron Stirling
(USACE)
402-221-7664 | | 6 | Holloman AFB, Main POL
Area, NM
See also
Bioremediation (In
Situ), Other
Technologies | Soil vapor
extraction with
air flushing | Former above
ground fuel
storage tank area
(JP-4 and AV Gas
spill) | Soil (quantity
unknown) | VOCs (Benzene),
PAHs (Petroleum
Hydrocarbons) | In design; Design completion planned Fall 1993; Construction scheduled to start Fall 1993 | USACE/Air Force
IRP Program | Ron Stirling
(USACE)
402-221-7664 | Table 3-1 Other Federal Programs: Site-Specific Information By Innovative Treatment Technology #### Soil Vapor Extraction (continued) | Region | Site Hame, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|----------------------------|---|--|---|--| | 6 | Kelly AFB, Site 1100*,
TX
See also
Bioremediation (In
Situ) | Soil vapor
extraction | Federal Facility
(hazardous waste
facility) | Soil (37,000 cy) | VOCs (JP-4) | Operational; Vacuum extraction done before with bioventing, information the same. | Army
(USACE)/Air
Force Funded | Joe Laird
(USACE, Omaha)
402-221-7772 | | 9 | Davis Monthan AFB,
Site 35, AZ
See also
Bioremediation (In
Situ) | Soil vapor
extraction with
bioventing | JP-4 Pump House | Soil (63,000 cy) | VOCs (JP-4,
Benzene) | In design;
Design
completion
planned Fall
1993 | USACE/Air Force
Funded;
Montgomery
Watson - Design
Contractor | Mike
Steffansmeier
(USACE, Omaha)
402-221-7163 | | 9 | Luke AFB, AZ | Soil vapor
extraction with
air flushing and
thermal
oxidation of off
gases | Air Force fire
training pits | Soil (35,000 cy) | VOCs (2-hexanone,
2-butanone,
4-methyl
2-pentanone,
BTEX) | Completed; Operational from 11/91 to 5/92. Will conduct long-term monitoring afterward | USACE
Lead/State
Oversight;
Envirocon | Jerome
Stolinsky
(USACE)
402-221-7170
Dan McCafferty
(Envirocon)
406-523-1150 | | 9 | McClellan AFB, CA | Soil vapor
extraction | Former fuel and
solvent disposal
site | Soil (12,000 cy) | VOCs (TCE, DCE,
Vinyl chloride,
Toluene,
Chlorobenzene) | Being installed; Installation completion planned Fall 1993; Pilot-scale test to be complete in Fall 1993 | Air Force; CH2M
Hill | Steve Hodge
(McClellan AFB)
916-643-0830
Jerry Styles
(McClellan AFB)
916-643-0533
Joseph Danko
(CH2M Hill)
503-752-4271 | | 9 | Seal Beach Navy
Weapons Station, CA
See also
Bioremediation (In
Situ) | Soil vapor
extraction with
combustion of
air emissions | Federal Facility
Naval weapons
station | Soil (quantity
unknown) | VOCs (BTEX) | In design;
Operation to
start in 1994 | Navy/DoD
Financed - IRP
Program; Jacobs
Engineering | Jeff Kidwell
(Navy)
619-532-2058
Steve McDonald
(Navy)
310-594-7655 | Table 3-1 Other Federal Programs: Site-Specific Information By Innovative Treatment Technology #### Soil Washing | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|------------------------|--|----------------------------|-----------------------------|---|---|--| | 5 | Saginaw Bay Confined
Disposal Facility, MI | Soil Washing | Confined disposal island | Sediments (150 cy) | PCBs | Completed;
Summer 1992 | COE
lead/Federal
Oversite;
Bergmann, USA | Jim Galloway
(USACE)
313-226-6760
Rick Traver
(Bergmann)
202-684-6844 | | 5 | Twin Cities Army
Ammunition Plant, MN | Soil Washing | Munitions
manufacturing/
storage | Soil (quantity
unknown) | Metals (Lead,
Mercury) | Predesign; PD
Completion
planned Fall
1993 | Federal
Facility/State
oversight;
Wenck
Associates,
Inc. | Peter Rissel
(US Army Env.
Center)
Martin McCleery
(Twin Cities
AAP) | Table 3-1 Other Federal Programs: Site-Specific Information By Innovative Treatment Technology #### Other | Region | Site Hame, State,
(ROD Date) | Specific
Technology | Site Description | Hedia (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|------------------------|--|------------------|---|---|---|---| | 4 | Savannah River DOE, M
Area Settling Basin,
SC
See also
Bioremediation (In
Situ), Soil Vapor
Extraction | air sparging | Leaking solvent
line | Groundwater | VOCs (TCE, PCE) | Operational;
Operational
since 1990 | DOE lead/DOE
funding;
Westinghouse
Savannah River
Company | Nate Ellis
(DOE)
803-952-4846
Brian Looney
(WSRC)
803-725-5181 | | 6 | Holloman AFB, Main POL
Area, NM
See also
Bioremediation (In
Situ), Soil Vapor
Extraction | Air Sparging | Former above
ground fuel
storage tank area
(JP-4 and AV Gas
spill) | Groundwater | VOCs (Benzene),
PAHs (Petroleum
Hydrocarbons) | In design; Design completion planned Fall 1993; Construction scheduled to start Fall 1993 | USACE/Air Force
IRP Program | Ron Stirling
(USACE)
402-221-7664 | ## OTHER FEDERAL PROGRAMS: INNOVATIVE TREATMENT TECHNOLOGIES BY EPA REGION Table 3-2 summarizes the innovative treatment technologies used at sites under other federal programs in each EPA region. | TECHNOLOGY | SITE NAME | STATE | TECHNOLOGY | SITE NAME | STATE | |---|--|--|---|--|--------------| | | REGION 3 | | | REGION 8 (continued) | | | Soil Vapor Extraction | Langley AFB, IRP Site 28 | VA | Bioremediation (Ex situ) | Former
Glasgow AFB | MT | | * | REGION 4 | ······································ | | DEGVOV A | | | | REGION 4 | | | REGION 9 | | | Bioremediation (In situ)
Soil Vapor Extraction | Savannah River DOE, M Area Basin
Savannah River DOE, M Area Basin | SC
SC | Bioremediation (In situ) | Aua Fuel Farm, Aua Village, American
Samoa | AZ | | Air Sparging | Savannah River DOE, M Area Basin | SC | Bioremediation (In situ) | Davis Monthan AFB | ΑZ | | | | | Bioremediation (In situ) | Davis Monthan AFB, Site 35 | ΑZ | | | | | Soil Vapor Extraction | Davis Monthan AFB, Site 35 | AZ | | | DECION 5 | | Soil Vapor Extraction | Luke AFB | AZ | | | REGION 5 | | Bioremediation (Ex situ) | Ft. Ord Marina, Fritzche AAF F | CA | | Soil Washing | Saginaw Bay Confined Disposal Facility | MI | Bioremediation (Ex situ) Bioremediation (In situ) | Marine Corps., Mountain Warfare | CA | | Soil Washing | Twin Cities Army Ammunition Plant | MN | Soil Vapor Extraction | Seal Beach Navy Weapons Station
McClellan AFB | CA | | Don Washing | 1 win Cities 11 my 1 minimum tion 1 mant | 14114 | Soil Vapor Extraction | Seal Beach Navy Weapons Station | CA
CA | | | | | Dechlorination | U. S. Public Works Center, Guam | GU | | | REGION 6 | · • | | | | | Bioremediation (In situ) | Helleman AED Mein DOL Anna | ND (| | | | | Soil Vapor Extraction | Holloman AFB, Main POL Area
Holloman AFB, BX Service Station | NM
NM | | DECION 10 | | | Soil Vapor Extraction | Holloman AFB, Main POL Area | NM | | REGION 10 | | | Air Sparging | Holloman AFB, Main POL Area | NM | Bioremediation (Ex situ) | Ft. Wainwright | AK | | Bioremediation (Ex situ) | Matagorda Island AF Range | TX | Bioremediation (Ex situ) | rt. Wallwright | AK | | Bioremediation (In situ) | Kelly AFB, Site 1100 | TX | | | | | Soil Vapor Extraction | Kelly AFB, Site 1100 | TX | | | | | | • | | | <u>OTHER</u> | | | | REGION 8 | | Bioremediation (In situ) | Naval Communication Station | Scotland | | Bioremediation (In situ) | Ft. Carson | СО | | | | #### OTHER FEDERAL PROGRAMS: PROJECT STATUS BY #### INNOVATIVE TREATMENT TECHNOLOGY Table 3-3 lists the applications of innovative treatment technologies at other federal program sites by technology and summarizes the status of the specific application. The symbols used in this table are: - PD In **predesign**: A site may be considered to be in predesign if EPA is negotiating the consent decree for the design with the responsible party, the lead agency is preparing the predesign report, the lead agency is contracting for the design firm, or the lead agency is conducting a treatability study or field investigation before beginning actual design work. - D In design: A site is considered to be in design after the design contractor has begun work. - D/I Design completed but not installed: This symbol is used if the **design** work had been completed but **installation** work has not yet begun at the time of publication of this report. - Being **installed**: An innovative treatment technology is "being installed" from the time the construction contract has been awarded until the time the treatment system has begun operation. For some technologies, this is a relatively short phase of the project, because such projects are assembled quickly on site. For other technologies, the period of installation lasts several construction seasons. - O Operational: A treatment technology is operational once it has been constructed and has been proven to be functional. The length of time required to complete the operation phase depends on such factors as the nature of the technology, the quantity of material to be treated, and the concentrations of the contaminants at the start of treatment. - C Completed: A treatment technology project is considered to be completed when the operation of the treatment technology ceases. Other site activities still may be planned or underway. TABLE 3-3. OTHER FEDERAL PROGRAMS: PROJECT STATUS BY INNOVATIVE TREATMENT TECHNOLOGY | REGION | BIOREMEDIATION (EX SITU) | STATUS | REGION | SOIL VAPOR EXTRACTION | STATUS | |-------------------|---|------------------|--------------------------------------|---|----------------------------| | 8
10
6
9 | Former Glasgow AFB, MT Ft. Wainwright, AK Matagorda Island AF Range, TX Ft. Ord Marina, Fritzche AAF Fire Drill Area, CA Marine Corps., Mountain Warfare Center, Bridgeport, CA | D
I
C
C | 6
6
9
9
3
9
4
6 | Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Seal Beach Navy Weapons Station, CA Davis Monthan AFB, Site 35, AZ Langley AFB, IRP Site 28, VA McClellan AFB, CA Savannah River DOE, M Area Settling Basin, SC Kelly AFB, Site 1100, TX | D
D
D
I
I
O | | REGION | BIOREMEDIATION (IN SITU) | STATUS | 9 | Luke AFB, AZ | С | | 6
9
8 | Holloman AFB, Main POL Area, NM Davis Monthan AFB, Site 35, AZ | D
D | REGION | SOIL WASHING | STATUS | | 6
9 | Ft. Carson, CO Savannah River DOE, M Area Settling Basin, SC Kelly AFB, Site 1100, TX Seal Beach Navy Weapons Station, CA Aua Fuel Farm, Aua Village, American Samoa | 0
0
0
0 | 5
5 | Twin Cities Army Ammunition Plant, MN
Saginaw Bay Confined Disposal Facility, MI | -PD
C | | 9 | Davis Monthan AFB, AZ Naval Communication Station, Scotland | c
c | REGION | OTHER | STATUS | | REGION | DECHLORINATION | STATUS | 6 4 | Holloman AFB, Main POL Area, NM
Savannah River DOE, M Area Settling Basin, SC | D
O | | 9 | U. S. Public Works Center, Guam, GU | 0 | ľ | | | #### OTHER FEDERAL PROGRAMS: PERFORMANCE DATA ON COMPLETED PROJECTS Table 3-4 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at non-Superfund sites. It is intended to supplement, not replace the information included in tables 3-1, 3-2, and 3-3. | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Hedia Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|--|-----------------------------|--|--|---|--|--| | 5 | Saginaw Bay Confined
Disposal Facility, MI
October 1991 to June 4,
1992 (Army) | Soil washing;
Water with
flocculant and
surfactant as
an additive
Bermann USA
Stafford
Springs, CT | Sediment (150
cy) | PCBs | 30 cy of sediment
treated per day | Dredging
Screening
Size Reduction | Residuals were
left at the
facility
Wastewater
discharged to
confined
disposal
facility | Forced cold-weather
shut down is a
limitation | | 6# | Matagorda Island Af
Range, TX
10/92 to 2/28/93 | Ex situ bioremdiation; solid phase All constructed on abandoned runway. Bacteria added and mechanically mixed. Four USTs found contamination under one UST. CCC, Inc. San Antonio, TX | Soil (500 cy) | TPH, PAHs benzene-toluene- ethylbenzene-xylene (BTEX) TPH - 3,400 ppm BTEX - 41.3 ppm Criteria: Texas water commission standards 100 ppm for TPH 30 ppm for combined BTEX | Batch process Retention time: 3 months 9 inch layers treated. Ambient temperature bacterial added to waste | Excavated approximately 40 by 60 ft area. Constructed on poly barrier and clean sand base. Did some mixing. | Backfilled the
soil into the
excavation | Island is now a wildlife refuge, has an endangered species. | | 9 | Ft. Ord Marina, Fritzche
AAF Fire Drill Area, CA
Winter 1991
(Army) | Land farming | Soil (4,000 cy) | TCE, MEK, TPH, BTEX | Initial concentration > 1,000 ppm End concentration < 200 ppm | None | None | Gail Youngblood
408-242-8017 | | 9 | Marine Corps.
Mountain Warfare Center
Bridgeport, CA
8/89 to 11/89
(Navy) | Bioremediation
(ex situ); heap
pile bioreactor | Soil (7,000 cy) | PAHs (petroleum
hydrocarbons,
diesel), Metals
(Lead)
After 2 months of
operation the TPH
levels were 120 ppm | | Excavation | | Temperature, pressure
and moisture content
are monitored
Bill Major (DoD)
805-982-1808 | ## TABLE 3-4 OTHER FEDERAL PROGRAMS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |----|--|--
--|---|--|---|---------------------------------------|---| | 9# | Luke AFB, AZ
11/92 to 5/9 | Soil vapor
extraction with
air flushing
and thermal
oxidation of
off-gases
Jacobs
Engineering | Soil (35,000 cy) | VOCs (2-hexanone, 2-butanone, 4-methyl 2 pentanone, BTEX) Removed approximately 11,000 lbs of vapors and 4,000 lbs of condensate | In situ down to
100 feet | None | Vaports were
thermally
oxidized | Total petroleum hydrocarbons were present but were too heavy to volatilize. Would recommend combining SVE with in situ bioremediation to treat contaminants that could not be extracted with the SVE. | | | Naval Communication
Station, Scotland
February to October 1985
(Navy) | Bioremediation
In situ soil,
in situ ground
water | Soil,
Groundwater
Soil quantity
approximately
800 m² in area,
depth unknown | TPH (No. 2 diesel
fuel) | Microorganisms
function best
between 20°C and
35°C. | Run-off water
collected in a
trench | None | The contaminated area had considerable slope, and the contaminated soil was a thin layer over a relatively impermeable rock substrate. | THIS PAGE INTENTIONALLY LEFT BLANK # Appendix A Summary of Status Report Updates, Changes, and Deletions THIS PAGE INTENTIONALLY LEFT BLANK #### Summary of Updates/Changes/Deletions Each edition of this report has added new information on the applications of innovative technologies at Superfund sites and has updated the status of existing innovative projects. The information added from ROD's from previous fiscal years that was deleted, or changed in each edition (from the first edition of the report published in January 1991 through this 5th edition) is described below to allow tracking of specific projects from edition to edition. Additions, Changes, and Deletions from the 1st edition report (January 1991) to the 2nd edition report (September 1991). | | | T 1 1 / / 1:4-3 | | 2nd Edition | | | | |--------|--|------------------------------------|-------|--|----------------|---|---| | Region | Site Name, State (ROD Date) | Technology (Listed in 1st Edition) | Added | Deleted | Changed to | Comments | Contacts/Phone | | 3 | Leetown Pesticides, WV (03/31/86) | Bioremediation | | Yes | | No further action. Risk re-
evaluated and was determined that
risk was not sufficient for remeidal
action. | Andy Palestini
215-597-1286
Philip Rotstein
215-597-9023 | | 3 | Harvey-Knott Drum, DE (09/30/85) | In Situ Soil Flushing | | Yes | | During remedial design, sampling indicated VOCs were no longer present in the soils. Heavy metals remained at the surface. An ESD was issued on 12/92. Remedy will consist of capping the site. | Kate Lose
215-597-0910 | | 2 | SMS Instruments (Deer Park), NY (09/29/89) | Thermal Desorption | | Yes (changed
to soil vapor
extraction in
3rd edition) | | Misinterpretation of ROD during
ROD analysis | Miko Fayon
212-264-4706 | | 1 | Re-Solve, MA (09/24/87) | Chemical Treatment | | | Dechlorination | Reclassified technology | Lorenzo Thantu
617-223-5500 | | 2 | GE Wiring Services, PR (09/30/88) | Chemical Extraction | , | | Soil Washing | Reclassified technology | Caroline Kwan
212-264-0151 | | - 6 | Sol Lynn/Industrial Transformers,
TX (03/25/88) | Chemical Treatment | | | Dechlorination | Reclassified technology | John Meyer
214-655-6735 | | 10 | Northwest Transformer, WA (09/15/89) | In Situ Vitrification | | Yes | | Technology dropped because commercial availability was delayed | Christine Psyk
206-553-6519 | Note: The 2nd edition report also added information on 45 innovative treatment technologies selected for remedial actions in FY 1990 RODs and 18 innovative treatment technologies used in removal actions. Additions, Changes, and Deletions from the 2nd edition report (September 1991) to the 3rd edition report (April 1992). | | | Technology (Listed | | 3rd Edition | L | | | |--------|---|--------------------------|-------|-------------|-----------------------|---|--------------------------------| | Region | Site Name, State (ROD Date) | in 2nd Edition) | Added | Deleted | Changed to | Comments | Contacts/Phone | | 2 | Marathon Battery, NY (09/30/88) | Thermal Desorption | | Yes | | During design soil gas
concentration at hot spots was
below NY state standards. GW
monitoring will continue. | Pam Tames
212-264-1036 | | 2 | Goose Farm, NJ (09/27/85) | In Situ Soil Flushing | | Yes | | Incorrectly classified. Actually conducting pump and treat with treated water being reinjected | Laura Lombardo
212-264-6989 | | 2 | GE Wiring Services, PR (09/30/88) | Soil Washing | | | Thermal
Desorption | Possible pre-wash of debris with surfactants | Caroline Kwan
212-264-0151 | | 4 | Coleman-Evans Wood Preserving,
FL (09/26/90) | Soil Washing | | Yes | | Problems due to the presence of furans. Incineration likely | Tony Best
404-347-2643 | | 5 | Sangamo/Crab Orchard National
Wildlife Refuge, IL (08/01/90) | In Situ Vitrification | | Yes | Incineration | ROD specified the remedy as in situ vitrification or incineration. Incineration was chosen | Nan Gowda
312-353-9236 | | 5 | Anderson Development, MI
(09/28/90) | In Situ Vitrification | | | Thermal
Desorption | Because of concern by the community the remedy was changed. ROD amendment signed 9/30/91, and ESD was signed 10/2/92 | Jim Hahnenberg
312-353-4213 | | 5 | U.S. Aviex, MI (09/07/88) | In Situ Flushing | | Yes | | Cleanup levels reached by natural attenuation | Robert Whippo
312-886-4759 | | 6 | Atchison/Santa Fe/Clovis, NM (09/23/88) | Bioremediation (ex situ) | | Yes | | | Ky Nichols
214-655-6783 | | 6 | Crystal Chemical, TX (09/27/90) | In Situ Vitrification | | Yes
· | | Remedy reconsidered after delay in commercial availability of technology. Vitrification considered for hot spots only. Revised remedy will consist of capping and off-site disposal/consolidation of soils. | Lisa Price
214-655-6735 | Note: The 3rd edition report also added information on 70 innovative treatment technologies selected for remedial actions in FY 1991 RODs. | | | T 1 1 / / 1 : | | 3rd Edition | | | | |--------|--------------------------------|------------------------------------|-------|-------------|-----------------------------|--|--| | Region | Site Name, State (ROD Date) | Technology (Listed in 2nd Edition) | Added | Deleted | Changed to | Comments | Contacts/Phone | | 9 | Solvent Service, CA (09/27/90) | Bioremediation
(in situ) | · | Yes | | ROD was misinterpreted during ROD analysis | Kevin Graves
510-286-0435
Steve Morse (CA)
570-286-0304 | | 9 | Poly Carb, NV (Removal) | Bioremediation
(ex situ) | | | Bioremediation
(in situ) | Reclassified technology | Bob Mandel
415-744-2290 | Additions, Changes, and Deletions from the 3rd edition report (April 1992) to the 4th edition report (October 1992). | | | Technology (Listed | | 4th Edition | | | | |--------|---|--------------------------|-----------------------|-------------|--------------------------------|--|--------------------------------| | Region | Site Name, State (ROD Date) | in 3rd Edition) | Added | Deleted | Changed to | Comments | Contacts/Phone | | 2 | Lipari Landfill Marsh Sediment, NJ
(07/11/88) | None | Thermal
Desorption | | | Missed during original ROD analysis | Tom Graff
816-426-2296 | | 2 | GE Wiring Services PR (09/30/88) | Thermal Desorption | | | Soil Washing | | Caroline Kwan
212-264-0151 | | | University of Minnesota, MN
(06/11/90) | Thermal Desorption | | Yes | Incineration
in 5th edition | Issued an ESD in August 1991 to change remedy to Thermal Desorption or Incineration. Incineration was chosen because it was less expensive | Darrel Owens
312-886-7089 | | 6 | Sol Lynn/Industrial Dechlorination
Transformers, TX (03/25/88) | Dechlorination | | Yes | | Discontinued due to implementation difficulties | John Meyer
214-655-6735 | | 6 | Koppers/Texarkana, TX (09/23/88) | Soil Washing | In Situ
Flushing | | | Remedy added by ROD amendment | Ursula Lennox
214-655-6735 | | 9 | Poly Carb, NV (Removal) | Bioremediation (in situ) | | | Bioremediation
(ex situ) | Reclassified technology | Bob Mandel
415-744-2290 | | 9 | Teledyne Semiconductors, CA (03/22/91) | Soil Vapor
Extraction | | Yes | | Mistakenly deleted from report | Sean Hogan
415-744-2233 | | 10 | Gould Battery (03/31/88) | Soil Washing | Soil Washing | | | Missed during original ROD analysis | Chip
Humphries
503-326-2678 | Note: The 4th edition report also added information on 10 innovative treatment technologies selected for remedial action in FY 1992 RODs, and 21 innovative treatment technologies at non-Superfund sites. Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993). | | | Technology Listed | | 5th Edition | | | | |--------|---|-----------------------------|-------|-------------|------------|---|---| | Region | Site Name, State (ROD Date) | in 4th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 1 | Re-Solve, MA (09/24/87) | Dechlorination | | Yes | | Pilot study showed that dechlorination increased the volume and that the waste still needed to be incinerated. An ESD to incinerate residuals off-site is in peer review. | Joe Lemay
617-573-9622 | | - 1 | Pinette's Salvage Yard, ME
(05/30/89) | Solvent Extraction | | Yes | | Will incinerate off-site | Ross Gilleland
617-573-5766 | | 2 | Naval Air Warfare Center, OU 1,
NJ (02/04/91) | In Situ Flushing | | Yes | | Remedy involves pump and treat with on-site discharge. Soil is not being targeted. | Jeff Gratz
212-264-6667 | | 2 | Naval Air Warfare Center, OU 2,
NJ (02/04/91) | In Situ Flushing | | Yes | | Remedy involves pump and treat with on-site discharge. Soil is not being targeted. | Jeff Gratz
212-264-6667 | | 2 | Naval Air Warfare Center, OU 4,
NJ (02/04/91) | In Situ Flushing | | Yes | | Remedy involves pump and treat with on-site discharge. Soil is not being targeted. | Jeff Gratz
212-264-6667 | | 2 | Caldwell Trucking, NJ (09/25/86) | Thermal Desorption | | Yes | | Thermal desorption not needed because highly contaminated soil will be incinerated off-site instead. Remainder will be stabilized. ESD issued. | Ed Finnerty
212-264-3555 | | 3 | Tobylanna Army Depot, PA
(Non-Superfund project) | Bioremediation
(in situ) | | Yes | | Will conduct ex situ passive volatilization | Drew Lausch
215-597-3161
Ross Mantione
(Tobyhanna)
717-894-6494 | Note: The 5th edition report also adds information on 49 innovative treatment technologies selected for remedial actions in FY 1992 RODs, and 15 innovative treatment technologies used in removal actions. #### Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993). (continued) | | | Technology Listed | 5th Edition | | | | | |--------|---|-----------------------------|--------------------------|---------|------------|--|--------------------------------| | Region | Site Name, State (ROD Date) | in 4th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 4 | Smith's Farm Brooks
(09/30/91) | Dechlorination | Thermal
Desorption | | | Will alter chemistry to achieve dechlorination during thermal desorption. | Tony DeAngelo
404-347-7791 | | 4 | American Creosote Works, FL (09/28/89) | Soil Washing | | Yes | | Bench-scale study of soil washing showed that the concentrations of carcinogenic PAHs were not adequately reduced. Also discovered dioxins at much higher concentrations | Mark Fite
404-347-2643 | | 4 | American Creosote Works, FL (09/28/89) | Bioremediation (Ex
Situ) | | Yes | | Bench-scale study of bioremediation (ex situ) showed that the concentrations of carcinogenic PAHs were not adequately reduced. Also discovered dioxins at much higher concentrations | Mark Fite
404-347-2643 | | 4 | Hollingsworth Solderless, FL (04/10/86) | None | Soil Vapor
Extraction | | | Listed as soil aeration in 3rd edition | John Zimmerman
404-347-2643 | | 5 | Cliffs/Dow Dump, MI (09/27/89) | Bioremediation (In
Situ) | | Yes | | Bioremediation (in situ) was a misinterpretation of the ROD. All soil will be excavated and treated by bioremediation (ex situ). | Ken Glatz
312-886-1434 | | 6 | Tenth Street Dump/Junkyard, OK (09/27/90) | Dechlorination | | Yes | | Remedy has been suspended because of implementation difficulties and escalating cost. Cost doubled from cost projected in ROD. Issuing ROD amendment to cap in place. | Mike Overbay
214-655-8512 | | 7 | Fairfield Coal & Gas, IA (09/21/90) | Bioremediation (in situ) | | Yes | | Pilot study showed in situ
bioremediation was too costly. It
appears that the present pump and
treat system will be able to achieve
cleanup levels. | Bruce Morrison
913-551-7755 | ### Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993). (continued) | Region | Site Name, State (ROD Date) | Technology Listed in 4th Edition | 5th Edition | | | | | |--------|---|----------------------------------|--------------------------|---------|-----------------------|--|--| | | | | Added | Deleted | Changed to | Comments | Contacts/Phone | | 8 | Sand Creek Industrial OU 5, CO (09/28/90) | Soil Washing | | | Thermal
Desorption | Soil washing did not meet performance standards and was expensive. ROD amendment issued early September 1993. | Erna Acheson
303-294-1971 | | 9 | Koppers Company (Oroville), CA (04/04/90) | Bioremediation (Ex
Situ) | | Yes | | Misinterpretation of ROD during ROD analysis | Fred Schlauffler
415-744-2365 | | 9 | Signetics (AMD 901) TRW OU, CA (09/11/91) | None | Soil Vapor
Extraction | | | Remedy added | Joe Healy
415-744-2331
Kevin Graves
(CA)
510-286-0435 | | 9 | Teledyne Semiconductors, CA (09/30/91) | None | Soil Vapor
Extraction | | | Dropped by mistake from 4th edition | Sean Hogan
415-744-2233 | | 10 | IDEL Warm Waste Pond, ID (12/05/91) | Acid Extraction | | Yes | | Treatability study of acid extraction did not achieve good extraction rates. Did not reduce the volume of waste. Will excavate, consolidate and cap. | Linda Meyer
206-553-6636
Nolan Jenson
(DOE)
208-526-0436 | | 10 | IDEL Warm Waste Pond, ID (12/05/93) | Soil Washing | | Yes | | Treatability study of soil washing did not achieve results. Did not reduce the volume of waste. Will excavate, consolidate and cap. | Linda Meyer
206-553-6636
Nolan Jenson
(DOE)
208-526-0436 |